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As a reminder, we are fitting a model where the probability of the presence of edge i j between nodes i and
j in a network is based on class membership of i in class q and j in class r:

log
P (Yij = 1|Y(ij) = y(ij))

P (Yij = 0|Y(ij) = y(ij))
= θqr

The parameters to estimate are θqr for every pair of classes q and r. We will discuss two methods to estimate
these parameters (a) maximizing likelihood using variational EM (https://arxiv.org/pdf/1011.1813.pdf)
and (b) sampling using MCMC (https://arxiv.org/pdf/1310.4378.pdf).

Both cases are based on rewriting the model above in terms of latent (unobserved) class assignment
variables. For instance, ziq = 1 if vertex i is assigned to class q and 0 otherwise. The number of classes Q
is assumed given. With that we can write the likelihood of a set of parameters θ = {θqr} given observed
adjacency matrix y and assignments z as

L(θ, α; y, z) =
∑
i

∑
q

ziq logαq +
1

2

∑
i6=j

∑
q,r

ziqzjrb(yij ; θqr)

with b(yij ; θqr) = yij log θqr + (1− yij) log (1− θqr). Values αq are prior (do not depend on specific nodes)
probabilities of assignment to class q. We will estimate these as well.

In EM we maximize this likelihood iteratively plugging in E[ziq|y, θ, α] = P (ziq = 1|y, θ, α), in MCMC we
sample assignments ziq from P (ziq = 1|y, θ, α).

Variational EM

The standard EM

The usual EM algorithm takes the following steps:

1. Initialize parameters θ, α

2. Repeat until convergence:

a. E-step: Compute γiq = E[ziq|y, θ, α] = P (ziq = 1|y, θ, α)

b. M-step: Estimate θ, α by maximizing L(θ, α; y, γ).

The solution to the M-step has a closed form:

αq =
1

n

∑
i

γiq

with n the number of nodes in the graph.
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θqr =

∑
i 6=j yijγiqγjr∑
i6=j γiqγjr

The E-step presents an issue. To compute P (ziq = 1|y, θ, α) we would employ Bayes’ rule:

P (ziq = 1|y, θ, α)) =
P (Y = y|ziq = 1, θ, α)

P (Y = y|ziq = 1, θ, α) + P (Y = y|ziq = 0, θ, α)

However, the probability model P (Y = y|ziq = 1, θ, α) induces a dependence between settings of z. This
means that in order to perform the E-step we need to reason about the joint distribution P (z|y, θ, α) which
leads to an inefficient algorithm. Here is where the variational trick comes in.

The variational trick

We introduce new parameters τiq to define a probability distribution RY (z|τ) =
∏
i h(zi, τi) with h a

Multinomial distribution over classes with parameters τi = [τi1, . . . , τiQ] used to approximate P (z|y, θ, α).

Iterations are now to find estimates τ to those that make RY (z|τ) best approximate P (z|y, θ, α) and then
estimate θ and α as before, but now using parameters τ .

Finding the optimal τ does not have a closed-form, but you can show that the optimal τ satisfy this
fixed-point relation

τiq ∝ αq
∏
j 6=i

∏
l

[exp{b(yij , θql)} exp{b(yji, θlq)}]τjl

Based on this observation, the E-step is replaced by iterating over the fixed point relation until convergence
to obtain τ .

The M-step estimates are obtained by the same equations as above, replacing γiq with τiq.

Checking convergence

Convergence can be determined by checking convergence of L(θ, α; y, z̃) where z̃ is the prediction of z
given by the current model. In Variational EM this would be given by the highest probability assignment
determined by τ .

Selecting the number of classes

To select the number of classes Q, you can use the ICL criterion by selecting the value Q that maximizes

`(θ, α; y, z̃)− 1

2

{
Q(Q+ 1)

2
log [n(n− 1)]− (Q− 1) log (n)

}
where `(θ, α; y, z̃) is the value of L(θ, α; y, z̃) after convergence.
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MCMC

In MCMC, instead of maximizing likelihood we sample from the probability model we have just defined,
and derive estimates empirically from the samples we obtain. We operate on an equivalent formulation of
the problem.

First, we ignore prior probabilities αq. Second, we note that the probability of graphs is strictly determined
by edge counts eqr =

∑
i6=j ziqzjr and nq =

∑
i ziq. These two points lead to the observation that P (Y |z) =

1/Θ({eqr}, {nq}) with S({eqr}, {nr}) = log Θ({eqr}, {nq}) given by

S({eqr}, {nr}) =
1

2

∑
q,r

nqnrHz

(
eqr
nqnr

)

with Hz(x) = −x log x− (1− x) log(1− x). This suggests that instead of maximizing L as we did before, we
get our model from minimizing S (this is the entropy of the same distribution btw). We will use sampling
in such a way that samples are accepted so they improve S.

The sampling procedure

The general algorithm is as follows (with parameters ε > 0 and β > 0):

First, randomly sample assignment q for each node i.

Then iterate K times (after enough iterations to mix):

a. For each node i move assignment q to r as follows:

(a.i) randomly select neighbor j of i and denote the current assignment of j as t

(a.ii) choose r uniformly at random (from 1, . . . , Q), accept with probability Rt = εQ/(et + εQ), with et the
total number of edges involving nodes in class t

(a.iii) if r is rejected, choose any edge u ∼ v with node u in class t, and set r to the class of node v

b. Decide if you accept move q → r as follows

(b.i) compute xiq→r =
∑
t p
i
tp(q → r|t) where pit is the fraction of neighbors of node i in class t and

p(q → r|t) =
etr + ε

et + εQ
= (1−Rt)etr/et +Rt/Q

with Rt as before with values etr and et computed after the move

(b.ii) compute yiq→r =
∑
t p
i
tp(r → q|t) with values etq and et computed before the move

(b.iii) compute δiq→r = S({enewqr }, {nnewq })− S({eoldqr }, {noldq }) where enewqr and nnewq are computed after the
move and eoldqr and noldq are computed before the move. Notice that only terms involving the classes for i
and its neighbors change so computing δ involves only computing the difference for those terms

(b.iv) accept moving node i from q → r with probability

min

{
e−βδ

i
q→r ×

xiq→r
yiq→r

, 1

}
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Deriving estimates

We can derive estimates for θqr and γq from our samples as follows:

• After each iteration k over the nodes of the graph, we can estimate θkqr = ekqr/(n
k
qn

k
r ) where ek and

nk are calculated after all nodes have been (potentially) moved. To get an estimate of θqr we use the
average of the θkqr.

• Likewise, after each iteration k we produce an assignment for node i. We set γiq to be the proportion
of the K iterations in which node i was assigned to class q.

Model selection

Like Variational EM we can use the ICL criterion to determine the number of classes Q. In that case we use
the sampling estimates to compute `(θ; y, z̃)
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