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Genetic Interaction Network

e Yeast high-throuput double-
knockdown assay

e ~5000 genes

e ~800K interactions

http://www.geneticinteractions.org/

Costanzo et al. (2016) Science. DOI: 10.1126/science.aaf1420
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Genetic Interaction Network

e Number of vertices: 2803
 Number of edges: 67,268
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Preliminaries

Network: abstraction of
entities and their interactions
Graph: mathematical
representation

vertices: nodes
edges. links

Undirected graph
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Preliminaries

. Directed graph
Network: abstraction of

entities and their interactions
Graph: mathematical
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Network statistics: notation
Number of vertices: n

In our example: number of genes
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Network statistics: notation
Number of vertices: n

In our example: number of genes
Number of edges: m

In our example: number of genetic interactions
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Network statistics: notation
Number of vertices: n

In our example: number of genes

Number of edges: m

In our example: number of genetic interactions
Degree of vertex 7: k;

Number of genetic interactions for gene 1
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Network statistics: notation
On the board:

 Calculate number of edges m using degrees k; (for both directed and
undirected networks)

e Calculate average degree c

e Calculate density p
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Network statistics: notation
On the board:

 Calculate number of edges m using degrees k; (for both directed and
undirected networks)

e Calculate average degree c
e Calculate density p
In our example:

Average degree: 47.9971459
Density: 0.0171296 10 / 60



(On the board)

Number of edges using degrees (undirected)

1=1

Number of edges using degrees (directed)

n n
_ in __ out
m = E k' = E k;
1=1

1=1
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(On the board)

Average degree

Density
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Degree distribution

Fundamental analytical tool to
characterize networks

Pr. probability randomly chosen
vertex has degree k

On the board: how to calculate pg
and how to calculate average

degree c using degree distribution.

Frequency

800 1000
l

600
l

Degree Distribution
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100

200
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300
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(On the board)

Degree distribution

ni: number of nodes in graph with degree k
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Degree Distribution

log/log degree distribution
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Paths and Distances

Distance d;;: length of
shortest path betwen
vertices 7 and .
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Paths and Distances

Distance d;;: length of
shortest path betwen
vertices 7 and .

Diameter. longest shortest
path max,; dz'j
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Paths and Distances

Distance d;;: length of
shortest path betwen
vertices 7 and .

R
e

On the board: average path
length
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(On the board)

Average path length
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Distance Distribution

log (pdist)
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Distances and paths

By convention: if there is no path between vertices ¢ and j then d;; = oo
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Distances and paths

By convention: if there is no path between vertices ¢ and j then d;; = oo

Vertices © and j are connected if d;; < oo
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Distances and paths

By convention: if there is no path between vertices ¢ and j then d;; = oo
Vertices © and j are connected if d;; < oo

Graph is connected if d;; < oo forall ¢, j
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Distances and paths

By convention: if there is no path between vertices ¢ and j then d;; = oo
Vertices © and j are connected if d;; < oo
Graph is connected if d;; < oo forall ¢, j

Components maximal subset of connected components
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Components
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Clustering Coefficient

One more quantity of interest: how dense is the neighborhood around
vertex 1?

Do the genes that interact with me also interact with each other?

Definition on the board

26 / 60



(On the board)

Clustering coefficient

Zmi

ki(ki —1)

C; —

m;: number of edges between neighbors of vertex 2
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Clustering coefficient

segee 28 / 60



Adjacency Matrix
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Adjacency Matrix

On the board: et e Ty
v L
« Definition : X '-'-."-:;
e Computing degree with adj. . ﬂ;
matrix ._1 |._.._
e Computing num. edges m with . ,.,.:I_I..
adj. matrix ...-.*1-
« Computing paths with adj. matrix Falp LI
"."'-.,E . .
YU
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Adjacency Matrix

Directed graph
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Weighted networks

Edges are assigned a weight indicating quantitative property of
Interaction
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Weighted networks

Edges are assigned a weight indicating quantitative property of
Interaction

e Strength of genetic interaction (evidence from experiment)
e Rates in a metabolic network

e Spatial distance in an ecological network
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Adjacency matrix contains weights instead of 0/1 entries
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Adjacency matrix contains weights instead of 0/1 entries

Path lengths are the sum of edge weights in a path
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Hypergraphs

Edges connect more than two vertices

A Protein-protein interaction network

NGO, ) @
®

C, ={A,B,C,D}
Cy, ={A,E} —]
Cs ={C,E}

- o8

Hypergraph Graph

https.//journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000385
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Trees

Acyclic graphs

Single path between any pair of
vertices

https.//www.sciencedirect.com/science/article/pli/S098194281 7304321
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https://www.sciencedirect.com/science/article/pii/S0981942817304321

Bipartite Networks

C Reaction networks

Rl:AHB
R22A+B—’C+D

—
R3;D—>E

Bipartite graph
Ry Ry R3

A/-1 -1 0 R
B 1 -1 0 @
clo 1 o0 @ \
D 0 1 -1 |stoichiometric
F 0

0 1 /matrix Hypergraph o e

Substrate graph @
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Bipartite Networks
We use an Incidence Matrix B instead of Adjacency Matrix

(On the board): definition
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Bipartite Networks

Projections
vertex projection: P;;, num. of groups in which vertices ¢ and j co-occur

group projection: PZ’] num. of members groups 7 and j share
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Bipartite Networks
Projections
vertex projection: P;;, num. of groups in which vertices ¢ and j co-occur
group projection: PZ’] num. of members groups 7 and j share
(On the board)
P=B'B
P' = BB*
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Centrality

What are the important
nodes in the network?

What are central nodes in

2
the network” —

T
g - . “ \
B =" &, _ :
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Centrality
Undirected Graphs

e Eigenvalue Centrality

Directed Graphs

o Katz Centrality
e Pagerank
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Centrality
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Betweenness

What are the important
edges in the network?

What are edges that may
connect clusters of nodes In
the network?
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Betweenness

Girvan-Newman Algorithm -
hierarchical method to
partition nodes into
communities using edge
betweenness
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Girvan-Newman Algorithm
Two phases:

Phase One: Compute betweenness for every edge
Phase Two: Discover communities by removing high betweenness
edges (similar to hierarchical clustering)
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Girvan-Newman Algorithm
Calculating Betweenness

Formally, betweenness(e): fraction of vertex pairs (z, y) where
shortest path crossess edge e

Path Counting: For each vertex x, use breadth-first-search to count
number of shortest paths through each edge e in graph between o and
every other vertex y.

Sum result across vertices for each edge e, and divide by two

Presentation from Mining Massive Datasets Leskovec, et al.
nttp://mmds.org/ (Ch. 10)
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Girvan-Newman Algorithm
Counting Paths

Algorithm (starting from node )

1. Construct breadth-first search tree

2. (Root->Leaf) Label each vertex v with the number of shortest paths
between x and v: sum of labels of parents

3. (Leaf->Root) Count the (weighted) number of shortest paths that go
through each edge: next slide
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Girvan-Newman Algorithm

Counting Paths

Step 3, counting number of shortest paths through each edge
a. Leafs v in search tree get a creditof C, = 1

b. Incoming edge e; = (y;, v) to vertex v in search tree gets credit

C. =C, %=
€i v ijj

e p;: number of shortest paths between x and y; (computed in Step 2)
e SUM Zj IS over parents of v
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Girvan-Newman Algorithm
Counting Paths

c. Non-leaf vertex v gets credit C, = 1 + Zj e; where sum 7 is over

outgoing edges €; in search tree

51/60



Girvan-Newman Algorithm

Example

A (B)
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Resources

Cross-language

igraph: http://igraph.org/
Boost Graph Library:
https://www.boost.org/doc/libs/1_ 71 O/libs/graph/doc/

53 /60


http://igraph.org/
https://www.boost.org/doc/libs/1_71_0/libs/graph/doc/

Resources
Python

e 1graph
e networkx
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http://igraph.org/python/doc/tutorial/tutorial.html
https://networkx.github.io/

Resources

R

Workhorses:

e 1graph
e Rgraphviz

Tidyverse (https://tidyverse.org):

e tidygraph
e goraph
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Resources

For data analysis it is helpful to think in terms of rectangular datasets

For networks, we need to have two distinct tables to represent this data.

e One table represents entities and their attributes:

undirected_graph_1958 %>%
activate(nodes) %>%

as_tibble()

## 3 3

## 4 4

##

##

##

##

##

# A tibble: 70 x 2

1

2

name

<chr>

1

2

.tidygraph_node_1index
<int>
1

2
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Resources

e Second table to represent edges and their attributes:

o/>0/

undirected_graph_1958 %>%

activate(edges) %>%

as_tibble()

## 3 1 20 <int
## 4 1 21 <int
## 5 2 9 <int
## 6 2 21 <int
## 7 4 5 <int

[1]>
[1]>
[1]>
[1]>

[2]>

## # A tibble:

##

##

##

##

<tibble

<tibble

<tibble

<tibble

<tibble

[1
[1
[1
[1

[2

from

202 x 4

<int> <int> <list>

1
1
x 3]>
x 31>
x 3]>
x 3]>

x 3]>

14 <int [2]>

16 <int [1]>

to .tidygraph_edge_index .orig_data

<list>
<tibble [2 x 3]>

<tibble [1 x 3]>
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Network-derived attributes

Besides attributes measured for each node, we have seen we can derive
node and edge attributes based on the structure of the network.

For instance, we can compute the degree of a node, that is, the number
of edges incident to the node.
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Network-derived attributes

## # A tibble: 70 x 3

undirected_graph_1958 <- undirected_graph_194 name .tidygraph_node_index degree
activate(nodes) %>% ## <chr> <int> <dbl>
mutate(degree = centrality_degree()) B 01 1 1 4
undirected_graph_1958 %>% w22 2 2
activate(nodes) %>% w33 3 °
as_tibble 44 N >
## 5 5 5 5
## 6 6 6 5
## 7 7 7 3
## 8 8 8 5

59 /60
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Network-derived attributes

The distribution of newly created attributes are fundamental analytical
tools to characterize networks.

Degree distribution of friendship network

undirected_graph_1958 %>%

-20= -
activate(nodes) %>% N *
E: 25 —
as_tibble() %>% 5 .
£ . .
2 -30-
group_by (degree) %>% 2
5
o o
summarize(n=n()) %>% B .
ungroup () %>% 40-
[ ] L ] LN ] .
mutate (num_nodes = sum(n)) %>% 0 i
Degree {log)

mutate(deg_prop = n / num_nodes) %>% 60 / 60



