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The core of data analysis
Given observations (entities), and their characteristics (attributes)
Understand how those characteristics are distributed in the population

e means, variances, empirical distributions
e data generative models with parameters

Hope we can infer something useful about that population from the
understanding of the distribution of characteristics
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Thinking of networks in terms of data analysis
One way of thinking about networks:

o Entities and their characteristics (nodes and their attributes)
e Interactions and their characteristics (edges and their attributes)

How is the presence or absence of interactions distributed in the
population?
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Presence/absence models
Consider the analysis of a binary attribute in the population.
E.g., is gene PTEN expressed in normal breast cells?

What is a model we tend to use? Suppose the gene is expressed in p
cells in the population.

| take a sample of IV cells, measure how many express PTEN.
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Presence/absence models

If we do this sampling experiment many times, we expect to see

Binomial distribution

Y ~ Bin(N,p)

Bin(100,.2)

Frequency
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Presence/absence models

What is our expectation for Y ? Variance?
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Presence/absence models
What is our expectation for Y ? Variance?

For very large IV, same distribution is well approximated by
Y ~ Poisson(A = pN)
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Presence/absence models
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Presence/absence models

We can follow a similar idea to model presence/absence of an interaction
In the network

Given a network over IV entities (vertices)

What is the population of interest? All possible pairwise interactions
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Presence/absence models
Assumptions:
Fraction p of interactions actually occur in the population

The observed edges is a realization of random occurrences in
measurement of those interactions

How can we model the number of edges in a network?
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Presence/absence models

Y ~ Bin(N(N —1/2), p)

Bin(100%99/2, .2)

I

¥
150 200 250
!

Frequenc

&0 100
l

l

|
H

0
L

£ _
=

950 1000 1050 1100

10/ 62



Presence/absence models
What if we ask this question one node at a time?

If proportion p of interactions actually occur in the population, then what

IS the distribution of the number of interactions (edges) for a single
node?
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Presence/absence models
k; ~ Bin(N — 1,p)

Bin(99,.2)

Frequency
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Important observations

Expected degree is p(N — 1).
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Important observations
Expected degree is p(N — 1).

One reasonable estimate from data would be < k > (average degree)
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Important observations

e Degrees concentrated around

expectation

e Low degree and high degree

nodes rare
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Important observations
Back to Poisson
k; ~ POiS(< k >)

k
pr = P(k; = k) = e~ <> ==
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Important observations
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ER network model

Erdos-Renyi Construct a network with IV vertices given parameter p by
connecting vertices with probabllity p

18 /62



ER model

Emmergence of connected component
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ER model

Small world
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ER model

Clustering coefficient?

On the board
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ER model

How well does this model fit data?

logllog degree distribution
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ER model

How well does this model fit data?
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Power law

We see that exponential decay of high-degree probability does not fit
data well.

Log-log plot suggests a linear relationship
logpr, =~ —v X logk

pr = k7
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Power law
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Power law
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Power law (ultra-small world)
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Power law (scale-free)

ANOMALOUS SCALE-FREE
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Mo large network
can exist here

> 3 &
& S\Q‘ &Q‘\\ v?’s @‘,‘:@0
»P «0 S
«Q“ Foe ¢ EF &

(k‘) DIVERGES (.&} FINITE

3 2 FRG C :3
(k') DIVERGES B (’f‘> s T In N
K =N {J) " InnN

CRITICA

POIMT

(d} ~ InlnN

k., GROWS FASTER THAN ¥ ULTRA-SMALL
WORLD

28 / 62



Power Law

Generative random model for ER (poisson, random) network was
straightforward

Next topics:

e Why scale-free?

e Fitting power law networks to data

e Generative random model for power law networks

More sophisticated models to fit empirical data closer
Biologically-plausible random models (evolution/fitness etc.)
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Power Law
Why scale-free? A couple of ways to think about it:

e The variance of the degree distribution is infinite
e The right-hand tall of the degree distribution does not goto 0
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Power Law
Why scale-free? A couple of ways to think about it:

e The variance of the degree distribution is infinite
e The right-hand tall of the degree distribution does not goto 0

Moments of an RV, the expected value of powers of an RV

E|K] - center of the distribution

Ekz] - spread of the distribution (variance) this is the important one
E[k3] - skew of the distribution

and more...
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Power Law

Why scale-free?
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Power Law

Why scale-free?

E[k*] = i K pr, = i St
Kmin Krmin

Let's take some liberties to make this easier to think about

kmaaz
E[k*] = / K Vdk

kmz’n
and see what happens as k,,,,, — 00
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Power law
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Power law

, e
E|= C
3—7
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e For v > 3: scale is finite value as k,qz grows
e For 2 < v < 3: scale is infinite value as kn.x grows (scale-free)
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Power law
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Estimating the degree coefficient

Since so many structural properties of network depend on this value,
estimating it properly matters a lot.

Here is a procedure based on Maximum Likelihood Estimation
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Estimating the degree coefficient
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Estimating the degree coefficient
Step 1 - The estimate

Given k,,.;n, estimate ~y as

- N 7. - -1
| i=1 kmin — 3 )
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Estimating the degree coefficient
Step 2 - How good is it?

Dy,... = max |S(k) — px|

k Z kmin

min

with pg given by v
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Estimating the degree coefficient
Step 3 - Best model fit

Estimate «y as g, . that minimizes Dy, .
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Estimating the degree coefficient

Step 4 - Model check

s the optimal observed deviance Dy, _. consistent with the estimated ~y?

Generate a distribution of deviance statistics from power law model,
check where optimal deviance falls within generated distribution.
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Network Generation

The ER model gave use a generative algorithm to create a network that
satisifies "Poisson" degree distribution?

Let's see a generative model to obtain a power law network
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The Barabasi-Albert Model

Procedure:

o Start with mg nodes (with arbitrary links, or connected)
e At eachtime step t
o Growth: Add a new node with ™ edges
o Preferential attachment: probability new node links to node 7

I1(k;) = Zkk:

Some simple questions to warm up: (a) how many nodes after ¢ steps?
(b) how many edges after t steps?
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The Barabasi-Albert Model

Degree dynamics B |

k )2 k t

(t) = m(t—i) =
b o
: : 1."5; \
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The Barabasi-Albert Model

Degree distribution

pr ~ k73
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The Barabasi-Albert Model
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The Barabasi-Albert Model

Cluster coefficient
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Network growth models
Barabasi-Albert, some missing ingredients

» Fitness, properties beyond degree that control preferential attachment
e Age, preferential attachment depending on time
e Death, how to model nodes that go away?
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Network growth models
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Network growth models

More importantly: how well does this describe biologically plausible
emergence.

Is this consistent with evolution?

Next time...
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Fithess: Bianconi-Barabasi

Goal: not all nodes of the same degree are equally attractive

LINEAR PLOT LOG-LOG PLOT

Each node has fitness n;

MODEL

BARABASI-ALBERT ®

nik;
II(k;) =
Z z:jﬁﬁkj
Dynamics: :
kz(t) = my\y —
t;
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Fithess: Bianconi-Barabasi

Note: if you have data of network growth, you can estimate fithess
coefficient under BB model assumption
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Node deletion

In biological networks we often encounter systems in which nodes are
removed from networks:

e deleterious mutations in molecular networks
e neuron loss (e.g. AD)
e extinction in ecological networks

Model: at each time step, remove nodes with rate r
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Node deletion

Some observations:

e For r < 1 network grows slighly slower to BA model, so power-law

with y = 3 + =

e 7 = 1 exactly BA model
e For r > 1 network decays as it grows, analytical model not so

clean...

Regimes for deletion important to think about: e.g., removal probability
depends on degree (weak-get-weaker)
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Aging

Probabillity of attachment depends
on node age
II(k;, t;) ~ ki(t — t;)” i 255 d@

e.

N WS X o [e0)
T T T
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Node duplication

An alternative, more biologically plausible network growth model. New
nodes evolve from existing nodes through duplication
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Node duplication
Procedure:

e Start with seed graph Gy with ng nodes
e At eachtime step t
o Growth: Create graph G by selecting a vertex v; uniformly at
random from graph G;_1 and duplicate it by adding new node v
with same links as vy
o Deletion: Delete each edge connecting v with probability (1 — p)
o Addition: For each vertex u not connected to v, attach with

probability - —:no
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Node duplication

For large k can show power law
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Node duplication

Arguments of fitness, and to a greater degree, node deletion still hold in
this case.
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Analytical question

Given observed network structure, can we posit a growth model (with
associated parameters) that recapitulate observed network structure.

For many biological applications, node duplication with a node deletion
regime is a good first place to start
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Next time
We briefly saw analysis of some network properties in terms of dynamics
Next we use similar ideas to model processes over data:

e network diffusion
e network epidemics
» network robustness (percolation)
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