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Statistical Analysis

In this next unit we will look at methods that approach network analysis
from a statistical inference perspective.
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Statistical Analysis

In particular we will look at three statistical inference and learning tasks
over networks

e Analyzing edges between vertices as a stochastic process over which
we can make statistical inferences

e Constructing networks from observational data

e Analyzing a process (e.g., diffusion) over a network in a statistical
manner
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Exponential Random Graph Models

In ER random graph model edge probabilities were independent of
vertex characterisitics.

Now assume vertices have measured attributes.

Question: what is the effect of these attributes in network formation,
specifically in edge occurence.
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Exponential Random Graph Models

Denote Y as adjacency matrix of graph G over n elements
Denote X as matrix of vertex attributes.

We want to determine P(Y;; = 1|Y_;;y = y_(i5), %i, T, L(G))

where L(G) is a measure of structure of graph G and y_ ;) is the
configuration of edges other than edge 7 ~ j

5174



Exponential Random Graph Models

We can motivate ERGM model from regression (where outcome Y is
continuous)

10

Y|xz Z /BJxZ] — ﬁ L

on o ~J Qo w

C}-l‘h

6/74



Exponential Random Graph Models

We turn into a probabilistic model as
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Exponential Random Graph Models

For binary outcome Y we use /ogistic regression

linear

by
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Which corresponds to a Bernoulli model of P(Y; = 1|x;).
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Exponential Random Graph Models

The outcome of interest in the ERGM model is the presence of edge
Yij = 1.

Use a Bernoulli model with y;; as the outcome.

With vertex attributes and graph structural measure as predictors.
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Exponential Random Graph Models

Model 1: the ER model

P(Yi; = 1|Y_(ij) = y_i5)

log =0
P(}fw — O’Y_(ij) — y—(ij))

Thinking of logistic regression: model is a constant, independent of rest
of graph structure, independent of vertex attributes
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Exponential Random Graph Models

To fit models we need a likelihood, i.e., probability of observed graph,
given parameters (in this case 0)
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Exponential Random Graph Models

To fit models we need a likelihood, i.e., probability of observed graph,
given parameters (in this case 0)

write P(Y;; = 1|...) as p, then likelihood is given by

L(0;y) = ][ (1 —p) )
ij

12 /74



Exponential Random Graph Models

(Exercise)

L(6;y) = %eXp{HL(y)}

where L(y) is the number of edges in the graph.

This is the formulation given in reading!
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Exponential Random Graph Models

##

##

##

##

##

##

##

##

##

##

##

Observations: 36

Variables:

$

$ Seniority

$
$

name

Status
Gender
Off-ice
Years
Age
Practice

School

<chr>

<int>

<int>

<int>

<int>

<int>

<int>

<int>

<int>

factor|{Practice)
P
$:
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Exponential Random Graph Models

Sofd =—1.5

library(ergm)
A <- get.adjacency(lazega) and thUSp — 0183
lazega.s <- network::as.network(as.matrix(A), directed= )

ergm.bern.fit <- ergm(lazega.s ~ edges)

ergm.bern.fit

H#
## MLE Coefficients:
## edges

## -1.499
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Exponential Random Graph Models
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Exponential Random Graph Models

The ER model is not appropriate, let's extend with more graph statistics.

Sk(y): number of k-stars Tx(y): number of k-triangles
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Exponential Random Graph Models

In practice, instead of adding terms for structural statistics at all values of
k, they are combined into a single term

For example alternating k-star counts

AKS,(5) = 3 (-1
k=2

A is a parameter that controls decay of influence of larger k terms. Treat
as a hyper-parameter of model
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Exponential Random Graph Models

Another example is geometrically weighted degree count

N,—1

GWD,(y) = > e " Ny(y)
d=0

There is a good amount of literature on definitions and properties of
suitable terms to summarize graph structure in these models
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Exponential Random Graph Models

In addition we want to adjust edge probabilities based on vertex
attributes

For edge 7 ~ 7, 2 may have attribute that increases degree (e.g.,
seniority)

Or, 7 and 7 have attributes that together increase edge probability (e.qg.,
spatial distance in an ecological network)
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Exponential Random Graph Models
We can add attribute terms to the ERGM model accordingly. E.g.,

e Main effects: h(z;, z;) = x; + z;
e Categorical interaction (match): h(a:z-, 33]') = I(CEi —— 333‘)
e Numeric interaction: h(xi, CUj) — (sz — CUj)2
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Exponential Random Graph Models

A full ERGM model for this data:

lazega.ergm <- formula(lazega.s ~ edges + gwesp(log(3), fixed= ) +
nodemain("Seniority") +
nodemain("Practice") +
match("Practice") +
match("Gender") +

match("Office"))
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Exponential Random Graph Models

## # A tibble: 1 x 5
#H independence iterations logLik  AIC BIC
#it <lgl> <int> <dbl> <dbl> <dbl>

## 1 FALSE 2 -230. 474. 505.
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Exponential Random Graph Models

estimate std.error

statistic  p.value

-7.0065546 0.6711396 -10.439/87 0.0000000

0.5916556 0.0855375
0.0245612 0.0061996
0.3945545 0.1021836
0.7696627 0.1906006
0.7376656 0.2436241
1.1643929 0.1875340

6.916915 0.0000000
3.961761 0.0000744
3.861229 0.0001128
4.038093 0.0000539
3.027885 0.0024627
6.208970 0.0000000
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Exponential Random Graph Models
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Exponential Random Graph Models
A few more points:

The general formulation for ERGM is

Pp(Y = y) —eXP{ZQH }

where H represents possible configurations of possible edges among a
subset of vertices in graph

gH(y) = Hyijeﬂ yi; = 1 if configuration H occurs in graph
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Exponential Random Graph Models

This brings about some complications since it's infeasible to define
function over all possible configurations

Instead, collapse configurations into groups based on certain properties,
and count the number of times these properties are satisfied in graph

Even then, computing normalization term k is also infeasible, therefore
use sampling methods (MCMC) for estimation
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Stochastic Block Models

Cluster webs
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https://doi.org/10.1371/journal.pbio.1002527

Stochastic Block Models

Method to cluster vertices in graph
Assume that each vertex belongs to one of () classes

Then probability of edge 7 ~ 7 depends on class/cluster membership of
vertices 7 and
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Stochastic Block Models

Clustered ERGM model

If we knew vertex classes, e.g., 7 belongs to class g and 7 belongs to
class r

P(Yy = 1Y_45 = y_;5))
P(lfm — O‘Y_(w) — y—(ij))

log = 04
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Stochastic Block Models
Clustered ERGM model

Likelihood is then
£(9 y _eXp{Z equqr

with L. (y) the number of edges ¢ ~ j where 7 in class g and j in class
T

(a model like g~match(class) in ERGM)
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Stochastic Block Models

However, suppose we don't know vertex class assignments...

SBM is a probabilistic method where we maximize likelihood of this
model, assuming class assignments are unobserved
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Stochastic Block Models

Gaussian Mixture Model
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Stochastic Block Models

 Y;; edge i ~ j (binary)
z;q indicator for vertex ¢ class q (binary)

e oy prior for class ¢ p(zi; = 1) = a4
T4 probability of edge ¢ ~ 7 where ¢ in class g and 7 in class r
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Stochastic Block Models

With this we can write again a likelihood

9 Yy 2 Z Z Ziq lOg e % T = Z Z Z’LqZ]T yzya 7Tq7°)

Z#J q7r
with b(y, 7) = w¥(1 — 7)(17Y)

35/74



Stochastic Block Models

Like similar models (e.g., Gaussian mixture model, Latent Dirichlet
Allocation) can't optimize this directly

Instead EM algorithm used:

e Initialize parameters 6
e Repeat until "convergence":

o Compute ¥ig = E{ziq|y; 0} = p(ziq|y; 0)
o Maximize likelihood w.r.t. @ plugging in Yiq TOr Ziq.

36/ 74



Stochastic Block Models

Like similar models need to determine number of classes (clusters) and
select using some model selection criterion

e AIC
e BIC
* Integrated Classification Likelihood
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Stochastic Block Models

Integrated Classification Likelihood
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Communities

If we think of class as community we can see relationship with non-
probabilistically community finding methods (e.g., Newman-Girvan)

See http://www.pnas.org/content/106/50/21068.full for comparison of

thece methonde
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Summary
Slightly different way of thinking probabilistically about networks
Define probabilistic model over network configurations

Parameterize model using network structural properties and vertex
properties

Perform inference/analysis on resulting parameters

Can also extend classical clustering methodology to this setting

40/ 74



Learning Network Structure
How to find network structure from observational data

Gene Co-expression
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Learning Network Structure
How to find network structure from observational data

Functional Connectivity

| (¥ _‘J T |
Time (seconds)
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Learning Network Structure

Correlation Networks

The simplest approach: compute correlation between observations, if
correlation high, add an edge
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Learning Network Structure

Assume data y; = {yﬂ, Yiy - - - ,yiT} (e.g., gene expression of gene 17
in 1" different conditions) and y;

Important quantity 1: the covariance of y; and y;

T
Oij — T Z Yit — y]t — yj)
t=1
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Learning Network Structure

Important quantity 1: the covariance of y; and y;

T
Oij = T Z Yit — y]t - y])
t=1

How do y; and y; vary around their means?
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Learning Network Structure
We can estimate o;; from data by plugging in the mean of y; and y;.
We would notate the estimate as &z-j.

In the following, o;; often means &ij, it should follow from context.
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Learning Network Structure

We often need to compare quantities across different entities in system,
e.g., genes, so we want to remove scale

Pearson's Correlation:

O'Z'j

Pij =
0ii0jj

With o;; the standard deviation of y;:

O — \ %Z(yit ~Yi)
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Learning Network Structure

Note Pearson Correlation is between -1 and 1, it is hard to perform
Inference on bounded quantities, so one more transformation.

Fisher's transformation

2ij = tanh ™ (p;;) = Elog T :ZJ
ij
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Learning Network Structure

Histogram of rhoij Normal Q-Q Plot rhoij

Edge inference: hypothesis
test
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Learning Network Structure
Perform hypothesis test for every pair of entities, i.e., possible edge 7 j

We would compute P-value for each possible edge

When performing many independent tests, P-values no longer have our
Intended interpretation
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Learning Network Structure

Multiple Hypothesis Testing

Called Significant Not Called Significant Total

Null True V mo —V mo
Altern. True S mi;— S mi
Total R m— R m

Note: m total tests
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Learning Network Structure

Error rates

Family-wise error rate (FWER): the probability of at least one Type |
error (false positive) FWER = Pr(V > 1)

We use Bonferroni procedure to control FWER.

If testing at level a (e.g., o = 0.05), only include egdes for which P-
value p;; < a/m
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Learning Network Structure

Error rates

False Discovery Rate (FDR): rate that false discoveries occur

FDR =E(V/R;R > 0)Pr(R > 0)
We use Benjamini-Hochberg procedure to control FDR.

Construct list of edges at FDR level 5 (e.g. 8 = 0.1) if p) < %5,
where p(y) Is the p-value for the k-th largest p-value.

Note: there are other more precise FDR controlling procedures (esp. g-

values)
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Learning Network Structure

The problem with Pearson's correlation

Consider the following networks, where absence of edge corresponds to
true conditional independence between vertices in graph

(k, ()
OO (O—W

In all three of these, Pearson's correlation test with p;; is likely
statistically significant. 54 | 74




Learning Network Structure

Let's extend the way we think about the situation. First consider
covariance matrix for ¢, j and k

2
/Uz-z- Oij Uik\

_ . 2 .
= | 0y 05 Ojk

2
\Uki Okj Jkk)

55/ 74



Learning Network Structure

We can then think about the covariance of 7 and j conditioned on k

2 g 2 e
o T Oij o[ Yk  CikTjk
ijlk = o | — Okk . 2
0 ji O'jj OikO0 jk Ujk

How do y; and y; co-vary around their conditional means E(y;|yx) and
E(y;lye)
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Learning Network Structure

Partial correlation networks

This leads to the concept of partial correlation (which we can derive from
the conditional covariance)

Pii — PikPjk

e
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Learning Network Structure
Partial correlation networks

What's the test now? No edge if 2 and 7 are conditionally independent
(there is some k such that p; i, = 0)

Formally:
Hy : Pijlk = 0 for some k € V\{z‘,j}
Hy : pijr 7 0 for all k
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Learning Network Structure

Partial correlation networks
To determine edge ¢z ~ j compute P-value p;; as
pij = max{p;, : k€ Wiy}

where Dijlk is a P-value computed from (transformed) partial correlation
Pijlk

Use multiple testing correction as before
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Learning Network Structure
Problems with partial correlation networks
For every edge, must compute partial correlation wrt. every other vertex

Compound hypothesis tests like the above are harder to control for
multiple testing (i.e., correction mentioned above is not quite right)

The dependence structure they represent is unclear
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Learning Network Structure

Here we turn to a very powerful abstraction, thinking of graphs as a way
of describing the joint distribution of gene expression measurements
(Probabilistic Graphical Models).
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Graphical Models

Consider each complete vector of expression measurements at each
timey

Suppose some conditional independence properties hold for some
variables in y,

e Example: variable yo and y3 are independent given remaining
variables in y
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Graphical Models

We can encode these conditional independence properties in a graph.
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Graphical Models

Hammersley-Clifford theorem: all probability distributions that satisfy
conditional independence properties in a graph can be written as

P(y) = Zexp{Y_ fuly.)}

ceC

(' is the set of all cligues in a graph, ¢ a specific cligue and y,. the
variables in the clique.
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Graphical Models

The probability distribution is determined by the choice of potential
functions f.. Example:

1. fe(yi) = _%Tiz’yz‘z

2. fc({yiayj}) — —%Tijyz'?/j
3. fe(ye) = O0for |y.| > 3
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Graphical Gaussian Models

Define matrix 1 as

1 . :
1. Zij — T4 if there is an edge

between y; and y;
2. Zi_jl = ( otherwise

2
2
2_1 _ T12 To9 T23
2
0 793 ’7'33

Tia 0 T34

7'14\
0

T34
2 )
Ty
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Graphical Gaussian Models

With this in place, we can say that y is distributed as multivariate normal
distribution N (0, X).

Connection to partial correlation: We can think about distribution of y;
and y; conditioned on the rest of the graph 1/\{2-7j} and the (partial)

correlation of y; and y; under this distribution

Tij

PijlVigy — —
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Sparse Inverse Covariance

With this framework in place we can now think of network structure
Inference.

Main idea: given draws from multivariate distribution y (i.e., expression
vector at each time point),

Estimate a sparse inverse correlation matrix, get graph from the pattern
of 0's in the estimated matrix

Banerjee, et al. ICML 2006, JMLR 2008, Friedman Biostatistics 2007
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Sparse Inverse Covariance

Maximum Likelihood estimate of inverse covariance is given by solution
to

max logdet X — (SX)

S is the estimated sample covariance matrix

T
S = Z Yyt
t=1

(Yuck)
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Sparse Inverse Covariance

We can induce zeros in the solution using a penalized likelihood
estimate

max logdet X — (SX) — \|| X||1
X=0

where
| X1 = E X
1]

(Yuckier)
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Sparse Inverse Covariance

Block-coordinate ascent

Solve by maximizing one column of matrix at a time (edges for each
variable, e.g., 12 below)

min 2| X1{76 — 211 + X1l

. 1/2
with z = W11/ S12 and

S11 812)
X S = (
X = ( 11 :1312) S12 S22

IT12 T99 71/74



Sparse Inverse Covariance

Block-coordinate ascent

Solve by maximizing one column of matrix at a time (edges for each
variable, e.g., 12 below)

min 2| X1{76 — 211 + X1l

Solution is then 15 = W11

(This is I1-regularized least squares, easy to solve, not yucky at all)
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Sparse Inverse Covariance

Block-coordinate ascent

Solve by maximizing one column of matrix at a time (edges for each
variable, e.g., 12 below)

min 2| X1{76 — 211 + X1l

lterate over columns of matrix until 8 converges (or even better, until
objective function converges)
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Summary
Using Gaussian Graphical Model representation

e multivariate normal probability over a sparse graph
e take resulting graph as e.g., gene network

Use sparsity-inducing regularization (11-norm)

Block-coordinate ascent method leads to I1-regularized regression at
each step

e Can use efficient coordinate descent (soft-thresholding) to solve

regression problem
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