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Modeling epidemics over Networks

First analysis of

dynamical processes
over networks

Will let us exercise

some of the ways of

thinking about these

Processes
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Modeling epidemics over Networks

Questions

Are there network properties that predict spread of infection?
Are certain network types more resilient to infection than others?

If we can intervene (vaccinate) are there nodes in the network that are
more effective to vaccinate?
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Modeling epidemics over Networks

Questions

Are there network properties that predict spread of infection?
Are certain network types more resilient to infection than others?

If we can intervene (vaccinate) are there nodes in the network that are
more effective to vaccinate?

We'll start by looking at spread over non-networked populations
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Susceptibility and infection (SI model)

a.

Individuals in the population can be
In two states

An infected individual can infect any
susceptible individual they are Iin
contact with

If we start (¢ = 0 ) with some
number of infected individuals ( 2¢ ).
How many infected individuals are

there at time t?
472



SI model

d S(t)

pr (t) = B{k) ——1(t)

<k> average number of contacts per individual in one time step

3, "rate" probability an | infects an S upon contact
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SI model

d S(t)

pr (t) = B{k) ——1(t)

<k> average number of contacts per individual in one time step

3, "rate" probability an | infects an S upon contact

de . .
i Bk)i(1 — 1)
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SI model

Fraction of infected individuals in
population

igel kit

T 1 g + dgeBlhit

i(t)

Characteristic time (¢ s.t.
i(t) =1/e =~ .36)

FRACTION INFECTED i(t)
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0 2 8 10
exponential saturation

regime regime
If i 1s small, Ifi — 1
i = i P di i
dt
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SIS model

Infection ends (recovery), individual becomes susceptible again

RECOVERY
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SIS model

& = Blk)i(1 — i) — i

[ - recovery rate
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SIS model
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SIS model

Endemic State
Pathogen persists in
population after

saturation
Ro — M > 1
!
- _1_
Hoo) =1 5

—
T
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FRACTION INFECTED i(t)
o
I

exponential
outbreak

If i is small,
e 7 ol RN
i=ie

8 | 10

endemic
state

U

i(0)=1———

plk)
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SIS model

Disease-free State
Pathogen disappears
from population

R0:@<1

FRACTION INFECTED i(t)
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SIS model

Basic Reproductive Number

Characteristic Time
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SIR model

Individuals removed after infection (either death or immunity)

X >

REMOVAL
‘ ©®

REMOVED
(IMMUNE/DEAD)
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SIR model

di

dr
dit

ds
dt

dat

BURYi(L — 1 — ) — pi
7%}
—B{k)i(1 —r — 1)

FRACTION OF POPULATION
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Summary
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i(t) os [ [:

Exponential Regime:

Number of infected individ-
uals grows exponentially

Final Regime:
Saturation at t—=co

Epidemic Threshold:

Disease does not
always spread
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No closed
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Epidemic processes over networks (SI)

Consider node 7 in network:
si(t) average probability node i is susceptible at time t

x;(t) average probability node 7 is infected at time t
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Epidemic processes over networks (SI)

dsZ
— —szﬁ aw:cj

dCBi al
il ; Q5T
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Epidemic processes over networks (SI)

dt ‘=

dx; al

dt = 8252 aija:j

7=1
For large IV, and early t

dx
— = BAx
dt b
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Eigenvalue decomposition of A
y
A=VTAV A

Any quantity x; over nodes
In the graph can be written
as

N

X = E CrVy

r=1
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Eigenvalue decomposition of A

y
Av, = A\ v, A

AL A > > Ay
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Eigenvalue decomposition of A

Let's revisit centrality

N
x(t) = A'x(0) = ) ¢, A'v,
r=1
Then
N N o\
x(t) = e v, = N C; (—r) v,
(t) Z Z y
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Eigenvalue decomposition of A

As t grows, first term dominates
X(t) = cl)\’ivl

So set centrality x to be proportional to first eigenvector v
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Eigenvalue decomposition of A
As t grows, first term dominates
x(t) = 1 Al vy
So set centrality x to be proportional to first eigenvector v
1

In which case x = Az ifx = 37 V1 as desired
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Back to epidemics (SI)

x(t) average probability each node is infected at time ¢

dx
nciy- 3|
G PAx

Can write as

x(t) =Y e(t)vy

r=1
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Back to epidemics (SI)

dx  __ N dec,
r Dre1 @ Vr

= BAYY (), = BN Ae(D)vy
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Back to epidemics (SI)
% = > TV
= pA Zi\f:l Cr(t)vr = Zq{vzl ArCr (t)vr

Implying

dec,
dt

— ﬁ)‘rcr
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Back to epidemics (SI)

dx N dec,
r D=1 G Vr
= BAYY (), = BN Ae(D)vy

Implying

dec,

:)\'rr
i e

With solution
¢ (t) = ¢, (0)ePM
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Back to epidemics (SI)
As before, first term dominates so
x(t) ~ ey,

Eigen-centrality!
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Back to epidemics (SIR)

Cfl—}tc:ﬁAx—,u,x

Similarily

x(t) ~ elPr—n)t
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Back to epidemics (SIR)

Cfl—}tc:BAx—,u,x

Similarily
X(t) ~ e(ﬂ)‘l_u)t

Is there an epidemic? Not if Ry = g — L
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Degree distributions and epidemics

Degree Block i | o _* =
Approximation QAN _ :o .o 7o
Assume that all SR 5 t
nodes of the same
degree are
statistically equivalent

k=1 k=3
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Degree distributions and epidemics

Degree Block i | o _* =
Approximation QAN _ :o .o 7o
Assume that all SR 5 t
nodes of the same
degree are
statistically equivalent

k=1 k=3
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Degree distributions and epidemics

SI model

Fraction of nodes of degree k that are infected

. I,
Zk:Fk

diy,

g = B(1 — ix) kO

With ®y, the fraction of infected neighbors for a node of degree k
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Degree distributions and epidemics

For early time and assuming no degree correlation

Z°k Bk /T
g PR e
with
k
R
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Degree distributions and epidemics

Characteristic time

S
B((R) — (R)

For random networks (k%) = (k)({k) + 1)
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Degree distributions and epidemics

Characteristic time

For power law network v > 3 (k?) is finite, characteristic time is finite
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Degree distributions and epidemics

Characteristic time

For power law network v > 3 (k?) is finite, characteristic time is finite

For power law v < 3, (k?) does not converge as N — 00 S0
characteristic time goes to O
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Degree distributions and epidemics

Model

Sl

515

SIR

Continuum Equation

I.|I|'-'lL

Sbo= B = i kb

Iffi

ar =ﬁ|1 —:'A.]k(;ik —,EH';‘

o |'..'L

< = DSt — piy

S = 1 - r'; = Iy

T
(k)
Pk )= (k)
(k)

Bk y—pulk)

(k)

BT y—(u+p)(k)
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Immunization
Suppose a fraction g of nodes is immunized (i.e. resistant)

Rate of infection in SIR model changes from

yo P
7

fo
A(1—g)
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Immunization

We can choose a fraction g. such that rate of infection is below epidemic
threshold

For a random network

41172



Immunization

For a power-law network

p (k)
B (k?)

For high (k?) need to immunize almost the entire population

9e =1 —
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Immunization
Immunization can be more effective if performed selectively.

In power law contact networks, what is the effect of immunizing high-
degree nodes?
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Immunization
Immunization can be more effective if performed selectively.

In power law contact networks, what is the effect of immunizing high-
degree nodes?

First, how do you find them?

ldea: choose individuals at random, ask them to nominate a neighbor in
contact graph
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Immunization

What is the expected degree of the
nominated neighbor?

X kpy

1

0.6

Je

0.4

0

0

0.8

RANDOM VACCINATION

I

SELECTIVE IMMUNIZATION

1

7

2:9

Y

3

3.5
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Summary

e Epidemic as first example of dynamical process over network
Role of eigenvalue property in understanding epidemic spread
Role of degree distribution (specifically scale) in understanding
spread

Role of high-degree nodes in robustness of networks to epidemics
(immunization)
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Network Robustness

What if we lose nodes in the network?
b. (/.\.
?
U
&«

o

c. d



Percolation

Let's look at a simplified network growth model (related to ER)

C} ........

_ EEEEEEEEEPYNEEEEPY

e Nodes are Unlformlyatrandom G:'_::_‘:'_:G_"_::QQ'_:::
. . e T L T T O ............

placed in the intersections of a EERAAdNNNE AP YRR ANEE
regular grid ffif?f"?i@ff;?fff:?'
* Nodes in adjacent intersections EEPAS oo Telel
are linked I AEEPUNEPYNEEEAANP
PLARAPUNEEAANEEPYNEE

» Keep track of largest component AEPuERSEEEEEEEEEPYE
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Percolation

Let's look at a simplified network growth model (related to ER)

{:} ........

As nodes are added to the graph L_:f}_ff_';f_fff_f;f_fff;&é}}?f;
eeeT el e

e What is the expected size of the e
largest cluster? e
. _ EEAAEEPAAEAANEAAPS S

 What is the average cluster size? Lo et
PUPAANNASUNNNRNNR S

AdENEAANENEEEERANE

{:} ............. D
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Percolation

There is a critical threshold (percolation cluster p.. )

p=0.7

J

0

mmmmﬁaazu__

IQ#QIII‘QO“'Q##Q.I

' e 666 666 66 . 6 6664
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Percolation
There is a critical threshold (percolation cluster)
e Average cluster size
() ~[p—pc| "

e Order parameter ( Py, probability node is in large cluster)

Poo ~ (p — pc)ﬂp
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Critical Failure Threshold

Model failure as the reverse process
(nodes are removed) o
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Critical Failure Threshold

Similar modeling strategy applied to general networks

b.
! SCALE-FREE NETWORK

1
0.75

0.5

Peo (f)/P o (0)

0.25

0 0.25 0.5 f 0.75 1
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Critical Failure Threshold
First question: is there a giant component?

Molloy-Reed Criterion: Yes, if

Lol

(k)
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Critical Failure Threshold

For ER: (k%) = (k)((k) + 1)
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Critical Failure Threshold
For ER: (k%) = (k)((k) + 1)

There is a large component if

) _
B = (k) >1

Good, coincides with what we know
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Critical Failure Threshold

Second question: if we model failure as before, when does the giant
component disappear?
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Critical Failure Threshold

Second question: if we model failure as before, when does the giant
component disappear?

For ER:
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Critical Failure Threshold

For power law networks

1 21@712]{3 2 < v <3
fC: 3 v Ymin mam
l — == 1' — v > 3
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Critical Failure Threshold

For power law networks

P (f)/P o (0)

0.75 |

0.5

0.25

0.25

’}/:4.00

y =3.0
Y =20

60/ 72



Robustness to Attacks

What if node removal is targeted to hubs?

P (f)/P « (0)

0.75

0.5

0.25

0.25

0.5 f'

Attacks -e

Random Failures

0.75
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Robustness to Attacks

What if node removal is targeted to hubs?
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Robustness to Attacks

kmin =2

WY

|
Random Failures

Attacks —

Kmin = 3

kr‘nin =3

04

krnir*n = 2
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Designing Robustness

Hubs - robustness to random attacks No hubs - robustness to targeted
attacks

1.5

[ |
RANDOM

TARGETED
TOTAL

0 3] Y 10 1y 20 64 / 72



Designing Robustness

Maximize

tot __ prandom targeted
C T fc —I_ fc
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Designing Robustness

Maximize

tot __ prandom targeted
C T fc —I_ fc

Mixture of nodes

e fraction r of nodes have k,,,, degree
e remaining 1 — r nodes have k,,,;,, degree
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Designing Robustness

A .
L [ * '.' ] ﬂl o
A —a—a LI > -'- 14 ATTACK -=-
L ] [ ]
. N L7 Y . RANDOM FAILURE -
- - oy s B e 1
] -_- . i . '.': ...a:.:, v D ?5 1
L
* P e "Ja.':lln- L I |
* - L - . s .'i‘ P ¢
A . * - ::rf.,';f' . et e oo
W s7e . . =
.,-I". ." i i.l 4 ' | L] DE ]
- . f ‘-.r. . By - "-
- = P -.: s * %
o ] Y .l' “ = "h
oo . 0.25 \\‘
. i o . B
L] [ ] L] [ 2 ""'l‘
,
.. S S

67 /72



Designing Robustness

ATTACHK -»

RANDOM FAILURE =

05 f 075

0.25
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Designing Robustness

C.
. ATTACK =
RANDOM FAILURE =
0.75 |-
~ 0.5
0.25
a
0 025 05 f 075 1
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Designing Robustness

ATTACK =

RANDOM FAILURE -»-

1

Ty]
(= o

o

05 f 075

0.25

Summary
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e Percolation process to understand random failure



Summary

e Power law networks are robust to random failures

e Power law networks are susceptible to targeted failures

* Provable robustness to random and targeted failure using mixture of
node degrees
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Next time

Diffusion!!
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