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Diffusion Processes
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General dynamical processes

Research articles

Partitioning a reaction—diffusion ecological
network for dynamic stability

Dinesh Kumar, Jatin Gupta and Soumyendu Raha

Published:13 March 2019
https://doi-org.proxy-um.researchport.umd.edu/10.1098/rspa.2018.0524

=+ Add to Library . Get PDF

-

"
xi = filxp, yi) + E u"ﬁ.-[xj —Xx;)
J=10# |l’

H
yi=gxny)+ X wl(y—w)
j=1,j#i )

3/42



Diffusion

Data: Real-valued variable x; for
each node in network
Assumption: Network seeks stable
state where x; I1s "smooth" over
network

Process: Nodes with high value of
x; diffuse value to neighbors with
lower value x;

Insulated Heat Diffusion
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Diffusion

Question: How does the value of x; change over time?

da:z-
dt = CZ Az-j(a:j — ZUZ)
J
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Diffusion

In matrix form, in terms of the Graph Laplacian

dx

— +CLx =0
q O
L=D-—-A

with D = diag(k), k the vector of node degrees.
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Diffusion

Let's do the same previous trick with Eigenvalue decomposition (this
time of L)

x(t) =Y a(t)v,
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Diffusion

Let's do the same previous trick with Eigenvalue decomposition (this
time of L)

x(t) =Y a(t)v,

Can rewrite diffusion equation as

da,

Cha, =0
dt + 1
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Difussion

Solution
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Difussion

Solution

Properties

e A\, > 0 for all 0 (dynamics tend to stable point)

e The smallestE.V. A1 = 0

e L is block-diagonal, number of 0 eigenvalues equal to number of
components

10/ 42



General Dynamical Systems on Networks
We have now seen two examples of dynamical systems on networks

e Epidemics

dCBZ'
J

e Diffusion
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General Dynamical Systems on Networks

Let's look at these in the general case

da:z-
7 fi(z:) + Z A;igii(z;, z;)
j

Exercise: rewrite epidemic (S1) model and diffusion model in general
framework
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General Dynamical Systems on Networks
How to analyze this in the general case?

Linear stability analysis

o Stability: let's find states where dynamics are stable (attracting fixed
points)

e Linear: let's simplify analysis by looking at linear approximations of
dynamics around these states
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Linear stability analysis
Let's forget networks for a moment. Consider dynamical system defined
by

dx

E:f(m)
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Linear stability analysis

Let's forget networks for a moment. Consider dynamical system defined
by

dx

E:f(m)

Suppose there is a point z* where f(z*) = 0 (i.e., dg = 0)
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Linear stability analysis

Let's look at a point closeto £*; x = x* + €
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Linear stability analysis
Let's look at a point closeto £*; x = x* + €

Then

dx de

%:E:f($*+€)
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Linear stability analysis

Now we approximate it! (Taylor expansions, a.k.a. how the Iribe center
can curve)

de

R f(@) +ef' (") = ef (")
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Linear stability analysis

Now we approximate it! (Taylor expansions, a.k.a. how the Iribe center
can curve)

%~ flat) +ef' (@) = ef (&)

and solve

with A = f'(z*)

The sign of A gives us useful information (hold on to this thought). 19/ 42



Linear stability analysis

How about systems with two variables?

dx
% — f(way)
dy
E — g(xay)
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Linear stability analysis

Suppose we have fixed point (z*, y*)
f(@y7)
9(=",y")

0
0
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Linear stability analysis

Under the useful condition that Z—f

— (0 and d9 _ 0 then
Y dx
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Linear stability analysis

And solution
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Linear stability analysis

A < 0 attracting fixed point % % %%
A > 0 repelling fixed point

A=0"\()
RIS
sjrf %T/?

@A <0< (h) Az < 0 < A,
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Linear stability analysis

Back to networks

dwz-
el flz;) + Z Aiig(xi, ;)
J
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Linear stability analysis

Back to networks

dCBi
T flz;) + Z Aijg(zi, x;)
j

Imagine we have a fixpoint {x }

26 /42



Linear stability analysis

Using same approach

dei - -
. Q; Z BijAij| € + Z Vi Aij€;
L _ j

with o¢; = f’(CB:), 52']' — g;'z;i(il?f, ZE;), and Yi; = g;j (x;ka ZB;)
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Linear stability analysis

Eigenvalues again!

Letting

| oy Z BijAij
_ J _

DRI
j
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Linear stability analysis

Eigenvalues again!

Letting
M;j = 05 | Z BijAij| + Z VijAij
L J i J
Then
ﬁ = Me
dt
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Linear stability analysis

Write €(¢) = ) a,(t)v, where v, is eigen-vector of M.
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Linear stability analysis
Write €(¢) = ) a,(t)v, where v, is eigen-vector of M.

Then solve as

"Eigenvalues" of M determine attracting or repelling state, if at least one
positive A\, then system is not stable
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Linear stability analysis
Back to Graph Laplacian

Consider case g(x;, ;) = g(x;) — g(z;) (if g is identity then we can
do linear diffusion as before)

and we have a symmetric fixed point z7 = z* for all vertices 1
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Linear stability analysis
Back to Graph Laplacian

Consider case g(x;, ;) = g(x;) — g(z;) (if g is identity then we can
do linear diffusion as before)

and we have a symmetric fixed point z7 = z* for all vertices 1

dGZ'
dt

= QUE; + 52([@1523 — Az-j)ej
J
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Linear stability analysis

Or,

% = (al + BL)e
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Linear stability analysis

Or,

% = (al + BL)e

System is stable if « + B\, < 0 for all r
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Linear stability analysis

Since smallest eigenvalue of Laplacianis 0, « = f'(z*) < Oisa
condition for stability
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Linear stability analysis

Since smallest eigenvalue of Laplacianis 0, « = f'(z*) < Oisa
condition for stability

Also,

IS a condition for stability
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An example

Meme network (how often does x;
share this meme)

f() = a(1 — )

14 T 1+ z;

g(miawj)

a>00b0>0
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An example

Symmetric fixed point 7 = *

Stability conditions

(@) a= f'(z*) <0?

(b) Ap < 22
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Two useful properties of Eigenvalues

o Largest eigenvalue of adj. matrix A is bounded by maximum degree
An > V kmae, SO increasing degree increases largest eigenvalue and
potentially lead to unstable system
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Two useful properties of Eigenvalues

o Largest eigenvalue of adj. matrix A is bounded by maximum degree
An > V kmae, SO increasing degree increases largest eigenvalue and
potentially lead to unstable system

 Largest eigenvalue of Laplacian is bounded as k.02 = A = 2kmaz,
similarly, increasing maximum degree increases largest eigenvalue
and potentially lead to unstable system
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Summary
Dynamical systems can be represented over networks
Key analytical tool is linear stability analysis

e fixed points,
e linear approximation

Conditions for stabllity (i.e., when fixed point is strictly attracting) depend
on spectral properties of graph (precisely) and maximum degree
(imprecisely)
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