
Support Vector Machines
State-of-the-art classification and regression method

Flexible and efficient framework to learn classifers.

Nice geometric interpretation of how they are trained (based maximum
margin arguments).
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Support Vector Machines
Can be estimated over similarities between observations (more on this
later) rather than standard data in tabular form.

E.g., applications where string similarities, or network similarities are
readily available.

2 / 73

SVMs follow the "predictor
space partition" framework

Support Vector Machines
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Separating Hyperplanes
Training data: 

 is a vector of  predictor values for th observation,

 is the class label (we're going to use +1 and -1)

{(x1, y1), (x2, y2), … , (xn, yn)}

xi p i

yi
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Separating Hyperplanes
Training data: 

 is a vector of  predictor values for th observation,

 is the class label (we're going to use +1 and -1)

Build a classifier by defining a discriminative function such that

and

{(x1, y1), (x2, y2), … , (xn, yn)}

xi p i

yi

w0 + w1xi1 + w2xi2 + ⋯ + wpxip > 0 ifyi = 1

w0 + w1xi1 + w2xi2 + ⋯ + wpxip < 0 ifyi = −1
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Separating Hyperplanes
Points where the discriminative function equals 0 form a hyper-plane
(i.e., a line in 2D)

{x : w0 + w1x1 + ⋯ + wpxp = 0}
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Separating Hyperplanes
Hyper-plane partitions the predictor space into two sets on each side of
the line.

Denote  is the vector w (w1,w2, … ,wp)
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Separating Hyperplanes
Hyper-plane partitions the predictor space into two sets on each side of
the line.

Denote  is the vector 

Restrict estimates to those for which 

w (w1,w2, … ,wp)

w
′
w = ∥w∥2 = 1
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Separating Hyperplanes
Hyper-plane partitions the predictor space into two sets on each side of
the line.

Denote  is the vector 

Restrict estimates to those for which 

Then, the signed distance of any point  to the decision boundary  is 
.

w (w1,w2, … ,wp)

w
′
w = ∥w∥2 = 1

x L

w0 + w
′
x
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Separating Hyperplanes
With this we can easily describe the two partitions as

L+ = {x : w0 + w
′
x > 0},

L− = {x : w0 + w
′
x < 0}
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Separating Hyperplanes
The  we want as an estimate is one that separates the training data as
perfectly as possible.

w
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Separating Hyperplanes
The  we want as an estimate is one that separates the training data as
perfectly as possible.

Describe this requirement as

w

yi(w0 + w
′
xi) > 0, i = 1, … ,N
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Rosenblatt's algorithm
Algorithm to find vector  that satisfies the separation requirement as
much as possible.

Penalize  by how far into the wrong side misclassified points are:

: set of points misclassified by  (on the wrong side of the hyper-
plane).

w

w

D(w0, w) = −∑
i∈M

yi(w0 + w
′
xi)

M w
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Rosenblatt's Algorithm
Estimate  by minimizing .

Assuming  is fixed, the gradient of  is

and

w D

M D

∇wD(w0, w) = −∑
i∈M

yixi

= −∑
i∈M

yi
∂D(w0, w)

∂w0
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Rosenblatt's Algorithm
Rosenblatt's algorithm uses stochastic gradient descent:

Initialize parameters  and 
Cycle through training points , if it is misclassified, update
parameters as

and

Stop when converged (or get tired of waiting)
($rho$ is a learning rate parameter)

w0 w

i

w ← w + ρyixi

w0 ← w0 + ρyi
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Rosenblatt's Algorithm
Update Rule:

Learning rate parameter  is used to control how much we update  in
each step.

w ← w + ρyixi

ρ w
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Rosenblatt's Algorithm
Update Rule:

Learning rate parameter  is used to control how much we update  in
each step.

This is the gradient descent algorithm that forms the basis of neural
networks and deep learning.

w ← w + ρyixi

ρ w
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Rosenblatt's Algorithm
There are a few problems with this algorithm:

If there exists  and  that separates the training points perfectly,w0 w
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Rosenblatt's Algorithm
There are a few problems with this algorithm:

If there exists  and  that separates the training points perfectly,

then there are an infinite number of  and s that also separate the
data perfectly

w0 w

w0 w
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Rosenblatt's Algorithm
Algorithm will converge in a finite number of steps if the training data is
separable
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Rosenblatt's Algorithm
Algorithm will converge in a finite number of steps if the training data is
separable

However, the number of finite steps can be very large
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Rosenblatt's Algorithm
When the training data is not separable, the algorithm will not converge.
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Support Vector Machines
Support Vector Machines (SVMs) are designed to directly address these
problems.
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A central concept in SVMs that we
did not see in logistic regression is
the margin: the distance between
the separating plane and its nearest
datapoints.

Support Vector Machines
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Support Vector Machines
When the data are separable, SVMs will choose the single optimal 
that maximizes the distance between the decision boundary and the
closest point in each class.

w
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Support Vector Machines
When the data are separable, SVMs will choose the single optimal 
that maximizes the distance between the decision boundary and the
closest point in each class.

Why is this a good idea?

w
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Support Vector Machines
SVMs are designed from three key insights:

1. Look for the maximum margin hyper-plane
2. Only depend on pair-wise "similarities" of observations
3. Only depend on a subset of observations (support vectors)

Let's see these in turn.
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Maximum margin hyper-planes
Goal: find the hyper-plane that separates training data with largest
margin.

This will tend to generalize better since new observations have room to
fall within margin and still be classified correctly.
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Maximum margin hyper-planes
This can be cast as optimization problem:

maxw0,wM

s. t.|w|2 = 1

yi(w0 + w
′
xi) ≥ M ∀i
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Maximum margin hyper-planes
Rewrite optimization problem setting  and using a little bit
of algebra:

M = 1/∥w∥2

minw0,w |w|2

s. t.yi(w0 + w
′
xi) ≥ 1 ∀i

1

2
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Maximum margin hyper-planes

This is a constrained optimization problem

Minimize the norm of  under the constraint that it classifies every
observation correctly.

minw0,w |w|2

s. t.yi(w0 + w
′
xi) ≥ 1 ∀i

1

2

w
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Constrained Optimization
Recall the standard constrained optimization problem we encountered
before

minx f0(x)

s. t. fi(x) ≤ 0 i = 1, … ,m

hi(x) = 0 i = 1, … , p
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Constrained Optimization
Recall the standard constrained optimization problem we encountered
before

And associated Lagrangian

minx f0(x)

s. t. fi(x) ≤ 0 i = 1, … ,m

hi(x) = 0 i = 1, … , p

L(x,λ, ν) = f0(x) +
m

∑
i=1

λifi(x) +
p

∑
i=1

νihi(x)
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Constrained Optimization
Let's define the dual equation

g(λ, ν) = min
x

L(x,λ, ν)
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Constrained Optimization
Let's define the dual equation

And the dual problem

g(λ, ν) = min
x

L(x,λ, ν)

maxλ,ν g(λ, ν)

s. t. λi ≥ 0 i = 1, … ,m
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Constrained Optimization
Duality gap: let  be primal optimal, then~x

g(λ, ν) ≤ f0(~x)
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Constrained Optimization
Duality gap: let  be primal optimal, then

If  is primal optimal and  are dual optimal then

~x

g(λ, ν) ≤ f0(~x)

~x (
~
λ, ~ν)

g(
~
λ, ~ν) = f0(~x)
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Constrained Optimization
Let's restate the optimality conditions (Karush-Kuhn-Tucker)

fi(~x) ≤ 0 (primal feasible)

hi(~x) = 0
~
λi ≥ 0 (dual feasible)

~
λifi(~x) = 0 (complementarity)

∇xL(~x,
~
λ, ~ν) = 0 (saddle point)
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Maximum-margin hyper-planes
What does the Lagrangian look like for the maximum-margin hyper-plane
problem?

L(w0, w,α) = |w|2 +∑
i

−αi[yi(w0 + w
′
xi) − 1)]

1

2
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Maximum-margin hyper-planes
What does the Lagrangian look like for the maximum-margin hyper-plane
problem?

You can then find dual function by solving 

L(w0, w,α) = |w|2 +∑
i

−αi[yi(w0 + w
′
xi) − 1)]

1

2

minx L(x,λ, ν)
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Maximum-margin hyper-planes
In the maximum-margin hyper-plane case, the equivalent constrained
maximization problem (the dual problem) is:

maxα

N

∑
i=1

αi −
N

∑
i=1

N

∑
k=1

αiαkyiykx
′
ixk

s. t.αi ≥ 0 ∀i

1

2
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Maximum margin hyper-planes

This quadratic optimization problem is usually easier to optimize than the
original problem (notice there is only positivity constraints on ).

maxα

N

∑
i=1

αi −
N

∑
i=1

N

∑
k=1

αiαkyiykx
′
ixk

s. t.αi ≥ 0 ∀i

1

2

α
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Maximum margin hyper-planes

This quadratic optimization problem is usually easier to optimize than the
original problem (notice there is only positivity constraints on ).

We can still recover original parameters  and  from solution .

maxα

N

∑
i=1

αi −
N

∑
i=1

N

∑
k=1

αiαkyiykx
′
ixk

s. t.αi ≥ 0 ∀i

1

2

α

w0 w α
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Support Vector Machines
Key insight no. 2: SVMs only depend on pairwise "similarity"
functions of observations

Only inner products between observations are required as opposed to
the observations themselves.

maxα

N

∑
i=1

αi −
N

∑
i=1

N

∑
k=1

αiαkyiykx
′
ixk

s. t.αi = 0 ∀i

1

2
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Support Vector Machines
Also, we can write the discriminant function in equivalent form

f(x) = w0 +
n

∑
i=1

yiαix
′
xi
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Support Vector Machines
Also, we can write the discriminant function in equivalent form

Geometrically, we can think of the inner product between observations
as a "similarity" measure.

f(x) = w0 +
n

∑
i=1

yiαix
′
xi

46 / 73

Support Vector Machines
Also, we can write the discriminant function in equivalent form

Geometrically, we can think of the inner product between observations
as a "similarity" measure.

Therefore, we can fit these models with other measures that works as
"similarities".

f(x) = w0 +
n

∑
i=1

yiαix
′
xi
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Support Vector Machines
Key insight no. 3: SVMs only depend on a subset of observations
(support vectors)

Optimial solutions  and  must satisfy the following condition:w α

αi[yi(w0 + w
′
xi) − 1] = 0 ∀i.
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Support Vector Machines

Case 1: , then the signed distance between observation  and
the decision boundary is 1.

This means that observation  is on the margin

αi[yi(w0 + w
′
xi) − 1] = 0 ∀i.

αi > 0 xi

xi
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Support Vector Machines

Case 2: , then observation  is not on the margin
and .

αi[yi(w0 + w
′
xi) − 1] = 0 ∀i.

yi(w0 + w
′
xi) > 1 xi

αi = 0

50 / 73

Support Vector Machines
To define the discriminant function in terms of s we only need
observations that are on the margin,

i.e., those for which .

α

αi > 0
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Support Vector Machines
To define the discriminant function in terms of s we only need
observations that are on the margin,

i.e., those for which .

These are called support vectors.

α

αi > 0

52 / 73

Support Vector Machines
To define the discriminant function in terms of s we only need
observations that are on the margin,

i.e., those for which .

These are called support vectors.

Also implies we only need Support Vectors to make predictions.

α

αi > 0

53 / 73

The method we have
discussed so far runs
into an important
complication:

What if there is no
separating hyper-
plane?.

Non-separable data
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Non-separable data
The solution is to penalize observations on the wrong side of the
margin by introducing slack variables to the optimization problem.

minw0,x,ξ C

N

∑
i=1

ξi + ∥w∥2

s. t yi(w0 + w
′
xi) ≥ 1 − ξi ∀i

ξi ≥ 0 ∀i

1

2
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Non-separable data

 is a parameter that tradeoffs the width of the margin vs. the penalty on
observations on the wrong side of the margin.

minw0,w,ξ C

N

∑
i=1

ξi + ∥w∥2

s. t yi(w0 + w
′
xi) ≥ 1 − ξi ∀i

ξi ≥ 0 ∀i

1

2

C

56 / 73

Non-separable data

 is a parameter that tradeoffs the width of the margin vs. the penalty on
observations on the wrong side of the margin.

This is a "data fit + model complexity" learning objective.

minw0,w,ξ C

N

∑
i=1

ξi + ∥w∥2

s. t yi(w0 + w
′
xi) ≥ 1 − ξi ∀i

ξi ≥ 0 ∀i

1

2

C
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 is a hyper-
parameter to be
selected by the user
or via cross-validation
model selection
methods.

Non-separable data

C
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Non-separable data
An elegant result is that this formulation doesn't change the dual problem
we saw before very much:

maxα

N

∑
i=1

αi −
N

∑
i=1

N

∑
k=1

αiαkyiykx
′
ixk

s. t. 0 ≤ αi ≤ C ∀i

1

2
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Non-separable data
Only need support vectors, where  to define the discriminant
function and make predictions.

αi > 0
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Non-separable data
Only need support vectors, where  to define the discriminant
function and make predictions.

The smaller the cost parameter , the learned SVM will have fewer
support vectors.

αi > 0

C
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Non-separable data
Only need support vectors, where  to define the discriminant
function and make predictions.

The smaller the cost parameter , the learned SVM will have fewer
support vectors.

Think of the number of support vectors as a rough measure of the
complexity of the SVM obtained.

αi > 0

C
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What to do when we need non-
linear partitions of predictor space to
get a classifier?

Non-linear Support Vector Machine
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Non-linear Support Vector Machine
We can define the SVM discriminant function in terms of inner products
of observations.

We can generalize inner product using "kernel" functions that provide
something like an inner product:

f(x) = w0 +
n

∑
i=1

yiαik(x, xi)
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But, what is ? Let's consider two
examples.

Polynomial kernel: 

RBF (radial) kernel: 

Non-linear Support Vector Machine

k

k(x, xi) = 1 + ⟨x, xi⟩
d

k(x, xi) = exp{−γ∑
p

j=1(xj − xij)2}
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Non-linear Support Vector Machine
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Non-linear Support Vector Machine
The optimization problem is very similar

maxα

N

∑
i=1

αi −
N

∑
i=1

N

∑
k=1

αiαkyiykk(xi, xk)

s. t. 0 ≤ αi ≤ C ∀i

1

2
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SVM classi�cation example
Let's try fitting SVMs to a credit card default dataset. Let's start with a
linear SVM (where  is the inner product).k
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SVM classi�cation example
Here we are fitting three different SVMs resulting from using three
different values of cost parameter .

cost number_svs train_error test_error

1e-02 350 3.44 3.22

1e+00 352 3.44 3.22

1e+02 354 3.44 3.22

C
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SVM classi�cation example
Let's try now a non-linear SVM by using a radial kernel.

Notice now that we have two parameters to provide to the fitting function:
cost parameter  and parameter  of the radial kernel function.C γ
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SVM classi�cation example

cost gamma number_svs train_error test_error

0.01 0.01 344 3.44 3.22

1.00 0.01 348 3.44 3.22

10.00 0.01 347 3.44 3.22

0.01 1.00 392 3.44 3.22

1.00 1.00 426 2.82 2.58

10.00 1.00 382 2.64 2.66

0.01 10.00 491 3.44 3.22

1.00 10.00 1226 2.56 2.96 71 / 73

Support Vector Machines
Different algorithms depending on data size

Massive number of examples with few predictors, train with stochastic
gradient descent on the primal problem

Moderate number of examples, use quadratic optimization with kernel
functions

For quadratic version, can subset observations that could be support
vectors
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Support Vector Machines
State-of-the-art for many applications

RBF kernels usually work well, but tuning  properly is very important

Very elegant formulation

Kernel trick gives a lot of flexibility

γ
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Support Vector Machines
State-of-the-art classification and regression method

Flexible and efficient framework to learn classifers.

Nice geometric interpretation of how they are trained (based maximum
margin arguments).

1 / 73



Support Vector Machines
Can be estimated over similarities between observations (more on this
later) rather than standard data in tabular form.

E.g., applications where string similarities, or network similarities are
readily available.

2 / 73



SVMs follow the "predictor
space partition" framework

Support Vector Machines
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Separating Hyperplanes
Training data: 

 is a vector of  predictor values for th observation,

 is the class label (we're going to use +1 and -1)

{(x1, y1), (x2, y2), … , (xn, yn)}

xi p i

yi
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Separating Hyperplanes
Training data: 

 is a vector of  predictor values for th observation,

 is the class label (we're going to use +1 and -1)

Build a classifier by defining a discriminative function such that

and

{(x1, y1), (x2, y2), … , (xn, yn)}

xi p i

yi

w0 + w1xi1 + w2xi2 + ⋯ + wpxip > 0 ifyi = 1

w0 + w1xi1 + w2xi2 + ⋯ + wpxip < 0 ifyi = −1
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Separating Hyperplanes
Points where the discriminative function equals 0 form a hyper-plane
(i.e., a line in 2D)

{x : w0 + w1x1 + ⋯ + wpxp = 0}
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Separating Hyperplanes
Hyper-plane partitions the predictor space into two sets on each side of
the line.

Denote  is the vector w (w1, w2, … , wp)
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Separating Hyperplanes
Hyper-plane partitions the predictor space into two sets on each side of
the line.

Denote  is the vector 

Restrict estimates to those for which 

w (w1, w2, … , wp)

w
′
w = ∥w∥2 = 1

8 / 73



Separating Hyperplanes
Hyper-plane partitions the predictor space into two sets on each side of
the line.

Denote  is the vector 

Restrict estimates to those for which 

Then, the signed distance of any point  to the decision boundary  is 
.

w (w1, w2, … , wp)

w
′
w = ∥w∥2 = 1

x L

w0 + w
′
x
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Separating Hyperplanes
With this we can easily describe the two partitions as

L
+ = {x : w0 + w

′
x > 0},

L
− = {x : w0 + w

′
x < 0}
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Separating Hyperplanes
The  we want as an estimate is one that separates the training data as
perfectly as possible.

w
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Separating Hyperplanes
The  we want as an estimate is one that separates the training data as
perfectly as possible.

Describe this requirement as

w

yi(w0 + w
′
xi) > 0, i = 1, … , N
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Rosenblatt's algorithm
Algorithm to find vector  that satisfies the separation requirement as
much as possible.

Penalize  by how far into the wrong side misclassified points are:

: set of points misclassified by  (on the wrong side of the hyper-
plane).

w

w

D(w0, w) = −∑
i∈M

yi(w0 + w
′
xi)

M w
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Rosenblatt's Algorithm
Estimate  by minimizing .

Assuming  is fixed, the gradient of  is

and

w D

M D

∇wD(w0, w) = −∑
i∈M

yixi

= −∑
i∈M

yi

∂D(w0, w)

∂w0
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Rosenblatt's Algorithm
Rosenblatt's algorithm uses stochastic gradient descent:

Initialize parameters  and 
Cycle through training points , if it is misclassified, update
parameters as

and

Stop when converged (or get tired of waiting)
($rho$ is a learning rate parameter)

w0 w

i

w ← w + ρyixi

w0 ← w0 + ρyi
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Rosenblatt's Algorithm
Update Rule:

Learning rate parameter  is used to control how much we update  in
each step.

w ← w + ρyixi

ρ w
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Rosenblatt's Algorithm
Update Rule:

Learning rate parameter  is used to control how much we update  in
each step.

This is the gradient descent algorithm that forms the basis of neural
networks and deep learning.

w ← w + ρyixi

ρ w
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Rosenblatt's Algorithm
There are a few problems with this algorithm:

If there exists  and  that separates the training points perfectly,w0 w
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Rosenblatt's Algorithm
There are a few problems with this algorithm:

If there exists  and  that separates the training points perfectly,

then there are an infinite number of  and s that also separate the
data perfectly

w0 w

w0 w

19 / 73



Rosenblatt's Algorithm
Algorithm will converge in a finite number of steps if the training data is
separable
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Rosenblatt's Algorithm
Algorithm will converge in a finite number of steps if the training data is
separable

However, the number of finite steps can be very large
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Rosenblatt's Algorithm
When the training data is not separable, the algorithm will not converge.
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Support Vector Machines
Support Vector Machines (SVMs) are designed to directly address these
problems.
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A central concept in SVMs that we
did not see in logistic regression is
the margin: the distance between
the separating plane and its nearest
datapoints.

Support Vector Machines
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Support Vector Machines
When the data are separable, SVMs will choose the single optimal 
that maximizes the distance between the decision boundary and the
closest point in each class.

w
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Support Vector Machines
When the data are separable, SVMs will choose the single optimal 
that maximizes the distance between the decision boundary and the
closest point in each class.

Why is this a good idea?

w
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Support Vector Machines
SVMs are designed from three key insights:

1. Look for the maximum margin hyper-plane
2. Only depend on pair-wise "similarities" of observations
3. Only depend on a subset of observations (support vectors)

Let's see these in turn.
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Maximum margin hyper-planes
Goal: find the hyper-plane that separates training data with largest
margin.

This will tend to generalize better since new observations have room to
fall within margin and still be classified correctly.
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Maximum margin hyper-planes
This can be cast as optimization problem:

maxw0,wM

s. t.|w|2 = 1

yi(w0 + w
′
xi) ≥ M ∀i
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Maximum margin hyper-planes
Rewrite optimization problem setting  and using a little bit
of algebra:

M = 1/∥w∥2

minw0,w |w|2

s. t.yi(w0 + w
′
xi) ≥ 1 ∀i

1

2
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Maximum margin hyper-planes

This is a constrained optimization problem

Minimize the norm of  under the constraint that it classifies every
observation correctly.

minw0,w |w|2

s. t.yi(w0 + w
′
xi) ≥ 1 ∀i

1

2

w
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Constrained Optimization
Recall the standard constrained optimization problem we encountered
before

minx f0(x)

s. t. fi(x) ≤ 0 i = 1, … , m

hi(x) = 0 i = 1, … , p
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Constrained Optimization
Recall the standard constrained optimization problem we encountered
before

And associated Lagrangian

minx f0(x)

s. t. fi(x) ≤ 0 i = 1, … , m

hi(x) = 0 i = 1, … , p

L(x, λ, ν) = f0(x) +
m

∑
i=1

λifi(x) +

p

∑
i=1

νihi(x)
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Constrained Optimization
Let's define the dual equation

g(λ, ν) = min
x

L(x, λ, ν)
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Constrained Optimization
Let's define the dual equation

And the dual problem

g(λ, ν) = min
x

L(x, λ, ν)

maxλ,ν g(λ, ν)

s. t. λi ≥ 0 i = 1, … , m
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Constrained Optimization
Duality gap: let  be primal optimal, then~x

g(λ, ν) ≤ f0(~x)
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Constrained Optimization
Duality gap: let  be primal optimal, then

If  is primal optimal and  are dual optimal then

~x

g(λ, ν) ≤ f0(~x)

~x (
~
λ, ~ν)

g(
~
λ, ~ν) = f0(~x)
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Constrained Optimization
Let's restate the optimality conditions (Karush-Kuhn-Tucker)

fi(
~x) ≤ 0 (primal feasible)

hi(
~x) = 0

~
λi ≥ 0 (dual feasible)

~
λifi(

~x) = 0 (complementarity)

∇xL(~x,
~
λ, ~ν) = 0 (saddle point)
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Maximum-margin hyper-planes
What does the Lagrangian look like for the maximum-margin hyper-plane
problem?

L(w0, w, α) = |w|2 +∑
i

−αi[yi(w0 + w
′
xi) − 1)]

1

2
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Maximum-margin hyper-planes
What does the Lagrangian look like for the maximum-margin hyper-plane
problem?

You can then find dual function by solving 

L(w0, w, α) = |w|2 +∑
i

−αi[yi(w0 + w
′
xi) − 1)]

1

2

minx L(x, λ, ν)
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Maximum-margin hyper-planes
In the maximum-margin hyper-plane case, the equivalent constrained
maximization problem (the dual problem) is:

maxα

N

∑
i=1

αi −

N

∑
i=1

N

∑
k=1

αiαkyiykx
′
ixk

s. t.αi ≥ 0 ∀i

1

2
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Maximum margin hyper-planes

This quadratic optimization problem is usually easier to optimize than the
original problem (notice there is only positivity constraints on ).

maxα

N

∑
i=1

αi −

N

∑
i=1

N

∑
k=1

αiαkyiykx
′
ixk

s. t.αi ≥ 0 ∀i

1

2

α
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Maximum margin hyper-planes

This quadratic optimization problem is usually easier to optimize than the
original problem (notice there is only positivity constraints on ).

We can still recover original parameters  and  from solution .

maxα

N

∑
i=1

αi −

N

∑
i=1

N

∑
k=1

αiαkyiykx
′
ixk

s. t.αi ≥ 0 ∀i

1

2

α

w0 w α
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Support Vector Machines
Key insight no. 2: SVMs only depend on pairwise "similarity"
functions of observations

Only inner products between observations are required as opposed to
the observations themselves.

maxα

N

∑
i=1

αi −

N

∑
i=1

N

∑
k=1

αiαkyiykx
′

ixk

s. t.αi = 0 ∀i

1

2
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Support Vector Machines
Also, we can write the discriminant function in equivalent form

f(x) = w0 +
n

∑
i=1

yiαix
′
xi
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Support Vector Machines
Also, we can write the discriminant function in equivalent form

Geometrically, we can think of the inner product between observations
as a "similarity" measure.

f(x) = w0 +
n

∑
i=1

yiαix
′
xi
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Support Vector Machines
Also, we can write the discriminant function in equivalent form

Geometrically, we can think of the inner product between observations
as a "similarity" measure.

Therefore, we can fit these models with other measures that works as
"similarities".

f(x) = w0 +
n

∑
i=1

yiαix
′
xi
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Support Vector Machines
Key insight no. 3: SVMs only depend on a subset of observations
(support vectors)

Optimial solutions  and  must satisfy the following condition:w α

αi[yi(w0 + w
′
xi) − 1] = 0 ∀i.
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Support Vector Machines

Case 1: , then the signed distance between observation  and
the decision boundary is 1.

This means that observation  is on the margin

αi[yi(w0 + w
′
xi) − 1] = 0 ∀i.

αi > 0 xi

xi
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Support Vector Machines

Case 2: , then observation  is not on the margin
and .

αi[yi(w0 + w
′
xi) − 1] = 0 ∀i.

yi(w0 + w
′
xi) > 1 xi

αi = 0
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Support Vector Machines
To define the discriminant function in terms of s we only need
observations that are on the margin,

i.e., those for which .

α

αi > 0
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Support Vector Machines
To define the discriminant function in terms of s we only need
observations that are on the margin,

i.e., those for which .

These are called support vectors.

α

αi > 0
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Support Vector Machines
To define the discriminant function in terms of s we only need
observations that are on the margin,

i.e., those for which .

These are called support vectors.

Also implies we only need Support Vectors to make predictions.

α

αi > 0
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The method we have
discussed so far runs
into an important
complication:

What if there is no
separating hyper-
plane?.

Non-separable data

54 / 73



Non-separable data
The solution is to penalize observations on the wrong side of the
margin by introducing slack variables to the optimization problem.

minw0,x,ξ C

N

∑
i=1

ξi + ∥w∥2

s. t yi(w0 + w
′
xi) ≥ 1 − ξi ∀i

ξi ≥ 0 ∀i

1

2
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Non-separable data

 is a parameter that tradeoffs the width of the margin vs. the penalty on
observations on the wrong side of the margin.

minw0,w,ξ C

N

∑
i=1

ξi + ∥w∥2

s. t yi(w0 + w
′
xi) ≥ 1 − ξi ∀i

ξi ≥ 0 ∀i

1

2

C

56 / 73



Non-separable data

 is a parameter that tradeoffs the width of the margin vs. the penalty on
observations on the wrong side of the margin.

This is a "data fit + model complexity" learning objective.

minw0,w,ξ C

N

∑
i=1

ξi + ∥w∥2

s. t yi(w0 + w
′
xi) ≥ 1 − ξi ∀i

ξi ≥ 0 ∀i

1

2

C
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 is a hyper-
parameter to be
selected by the user
or via cross-validation
model selection
methods.

Non-separable data

C
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Non-separable data
An elegant result is that this formulation doesn't change the dual problem
we saw before very much:

maxα

N

∑
i=1

αi −

N

∑
i=1

N

∑
k=1

αiαkyiykx′
ixk

s. t. 0 ≤ αi ≤ C ∀i

1

2
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Non-separable data
Only need support vectors, where  to define the discriminant
function and make predictions.

αi > 0
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Non-separable data
Only need support vectors, where  to define the discriminant
function and make predictions.

The smaller the cost parameter , the learned SVM will have fewer
support vectors.

αi > 0

C
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Non-separable data
Only need support vectors, where  to define the discriminant
function and make predictions.

The smaller the cost parameter , the learned SVM will have fewer
support vectors.

Think of the number of support vectors as a rough measure of the
complexity of the SVM obtained.

αi > 0

C
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What to do when we need non-
linear partitions of predictor space to
get a classifier?

Non-linear Support Vector Machine
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Non-linear Support Vector Machine
We can define the SVM discriminant function in terms of inner products
of observations.

We can generalize inner product using "kernel" functions that provide
something like an inner product:

f(x) = w0 +
n

∑
i=1

yiαik(x,xi)
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But, what is ? Let's consider two
examples.

Polynomial kernel: 

RBF (radial) kernel: 

Non-linear Support Vector Machine

k

k(x, xi) = 1 + ⟨x, xi⟩
d

k(x, xi) = exp{−γ∑
p

j=1(xj − xij)
2}
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Non-linear Support Vector Machine
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Non-linear Support Vector Machine
The optimization problem is very similar

maxα

N

∑
i=1

αi −
N

∑
i=1

N

∑
k=1

αiαkyiykk(xi, xk)

s. t. 0 ≤ αi ≤ C ∀i

1

2
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SVM classi�cation example
Let's try fitting SVMs to a credit card default dataset. Let's start with a
linear SVM (where  is the inner product).k
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SVM classi�cation example
Here we are fitting three different SVMs resulting from using three
different values of cost parameter .

cost number_svs train_error test_error

1e-02 350 3.44 3.22

1e+00 352 3.44 3.22

1e+02 354 3.44 3.22

C
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SVM classi�cation example
Let's try now a non-linear SVM by using a radial kernel.

Notice now that we have two parameters to provide to the fitting function:
cost parameter  and parameter  of the radial kernel function.C γ
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SVM classi�cation example

cost gamma number_svs train_error test_error

0.01 0.01 344 3.44 3.22

1.00 0.01 348 3.44 3.22

10.00 0.01 347 3.44 3.22

0.01 1.00 392 3.44 3.22

1.00 1.00 426 2.82 2.58

10.00 1.00 382 2.64 2.66

0.01 10.00 491 3.44 3.22

1.00 10.00 1226 2.56 2.96 71 / 73



Support Vector Machines
Different algorithms depending on data size

Massive number of examples with few predictors, train with stochastic
gradient descent on the primal problem

Moderate number of examples, use quadratic optimization with kernel
functions

For quadratic version, can subset observations that could be support
vectors
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Support Vector Machines
State-of-the-art for many applications

RBF kernels usually work well, but tuning  properly is very important

Very elegant formulation

Kernel trick gives a lot of flexibility

γ
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