
Neural networks are a decades old
area of study.

Initially, these computational models
were created with the goal of
mimicking the processing of
neuronal networks.

Historical Overview

1 / 52

Inspiration: model neuron as
processing unit.

Some of the mathematical functions
historically used in neural network
models arise from biologically
plausible activation functions.

Historical Overview

2 / 52

Somewhat limited success in
modeling neuronal processing

Neural network models gained
traction as general Machine
Learning models.

Historical Overview

3 / 52

Historical Overview
Strong results about the ability of these models to approximate arbitrary
functions

Became the subject of intense study in ML.

In practice, effective training of these models was both technically and
computationally difficult.

4 / 52

Starting from 2005, technical
advances have led to a resurgence
of interest in neural networks,
specifically in Deep Neural
Networks.

Historical Overview

5 / 52

Deep Learning
Advances in computational processing:

powerful parallel processing given by Graphical Processing Units

6 / 52

Deep Learning
Advances in computational processing:

powerful parallel processing given by Graphical Processing Units

Advances in neural network architecture design and network
optimization

7 / 52

Deep Learning
Advances in computational processing:

powerful parallel processing given by Graphical Processing Units

Advances in neural network architecture design and network
optimization

Researchers apply Deep Neural Networks successfully in a number of
applications.

8 / 52

Self driving cars make use of Deep
Learning models for sensor
processing.

Deep Learning

9 / 52

Image recognition software uses
Deep Learning to identify individuals
within photos.

Deep Learning

10 / 52

Deep Learning models have been
applied to medical imaging to yield
expert-level prognosis.

Deep Learning

11 / 52

An automated Go player, making
heavy use of Deep Learning, is
capable of beating the best human
Go players in the world.

Deep Learning

12 / 52

Feed-forward Neural Networks
We will present the feed-forward neural network formulation for a general
case where we are modeling outcomes as

.
K Y1, … , Yk

f1(X), … , fK(X)

13 / 52

Feed-forward Neural Networks
In multi-class classification, categorical outcome may take multiple
values

We consider as a discriminant function for class ,

Final classification is made using . For regression, we can
take .

Yk k

arg maxk Yk

K = 1

14 / 52

Feed-forward Neural Networks
A single layer feed-forward neural network is defined as

hm = gh(w′
1mX), m = 1, … , M

 fk = gfk(w
′
2k

h), k = 1, … , K

15 / 52

The network is organized into input,
hidden and output layers.

Feed-forward Neural Networks

16 / 52

Feed-forward Neural Networks
Units represent a hidden layer,
which we can interpret as a derived
non-linear representation of the
input data as we saw before.

hm

17 / 52

Feed-forward Neural Networks
Function is an activation function
used to introduce non-linearity to
the representation.

gh

18 / 52

Historically, the
sigmoid activation
function was
commonly used

 or

the hyperbolic
tangent.

Feed-forward Neural Networks

gh(v) = 1
1+e−v

19 / 52

Nowadays, a rectified
linear unit (ReLU)

is used more
frequently in practice.
(there are many
extensions)

Feed-forward Neural Networks

gh(v) = max{0, v}

20 / 52

Feed-forward Neural Networks
Function used in the output layer
depends on the outcome modeled.

For classification a soft-max
function can be used

 where

.

For regression, we may take to
be the identify function.

gf

gfk(tk) = etk

∑
K

l=1 etk

tk = w′
2k

h

gfk

21 / 52

Deep Feed-Forward Neural Networks
The general form of feed-forward
network can be extended by adding
additional hidden layers.

22 / 52

Deep Feed-Forward Neural Networks
Empirically, it is found that by using
more, thinner, layers, better
expected prediction error is
obtained.

However, each layer introduces
more non-linearity into the network.

Making optimization markedly more
difficult.

23 / 52

Deep Feed-Forward Neural Networks
We may interpret hidden layers as
progressive derived representations
of the input data.

Since we train based on a loss-
function, these derived
representations should make
modeling the outcome of interest
progressively easier.

24 / 52

Deep Feed-Forward Neural Networks
In many applications, these derived
representations are used for model
interpretation.

25 / 52

Stochastic Gradient Descent
Many data analysis methods are thought of as optimization problems

We can design gradient-descent based optimization algorithms that
process data efficiently.

We will use linear regression as a case study of how this insight would
work.

26 / 52

Case Study

Let's use linear regression with one predictor, no intercept as a case
study.

Given: Training set , with continuous response
 and single predictor for the -th observation.

Do: Estimate parameter in model to solve

{(x1, y1), … , (xn, yn)}
yi xi i

w y = wx

min
w

L(w) =
n

∑
i=1

(yi − wxi)
21

2

27 / 52

Suppose we want to fit this model to
the following (simulated) data:

Case Study

28 / 52

Our goal is then to find the value of
(w) that minimizes mean squared
error. This corresponds to finding
one of these many possible lines.

Case Study

29 / 52

Each of which has a specific error
for this dataset:

Case Study

30 / 52

Case Study

1) Loss is minimized when the derivative of the loss function is 0

2) and, the derivative of the loss (with respect to) at a given estimate
 suggests new values of with smaller loss!

w

w w

31 / 52

Let's take a look at the
derivative:

Case Study

L(w) =

n

∑
i=1

(yi − wxi)
2

=
n

∑
i=1

(yi − wxi)(−xi)

∂

∂w

∂

∂w

1

2

32 / 52

Gradient Descent
This is what motivates the Gradient Descent algorithm

1. Initialize
2. Repeat until convergence

Set

With

w = normal(0, 1)

w = w + η∑
n
i=1(yi − f(xi; w))xi

f(xi; w) = wxi

33 / 52

Gradient Descent
The basic idea is to move the current estimate of in the direction that
minimizes loss the fastest.

w

34 / 52

Let's run GD and track what it does:

Gradient Descent

35 / 52

Gradient Descent
"Batch" gradient descent: take a step (update) by calculating
derivative with respect to all observations in our dataset.

where .

w

n

w = w + η

n

∑
i=1

(yi − f(xi; w))xi

f(xi) = wxi

36 / 52

Gradient Descent
For multiple predictors (e.g., adding an intercept), this generalizes to the
gradient

where

w = w + η

n

∑
i=1

(yi − f(xi; w))xi

f(xi; w) = w0 + w1xi1 + ⋯ + wpxip

37 / 52

Gradient Descent
Gradiest descent falls within a family of optimization methods called first-
order methods (first-order means they use derivatives only). These
methods have properties amenable to use with very large datasets:

1. Inexpensive updates
2. "Stochastic" version can converge with few sweeps of the data
3. "Stochastic" version easily extended to streams
4. Easily parallelizable

Drawback: Can take many steps before converging

38 / 52

Stochastic Gradient Descent
Key Idea: Update parameters using update equation one observation at
a time:

1. Initialize ,
2. Repeat until convergence

For to
Set

w = normal(0, √p) i = 1

i = 1 n

w = w + η(yi − f(xi; w))xi

39 / 52

Let's run this and see what it does:

Stochastic Gradient Descent

40 / 52

Stochastic Gradient Descent
Why does SGD make sense?

For many problems we are minimizing a cost function of the type

Which in general has gradient

arg min
f

∑
i

L(yi, fi) + λR(f)
1

n

∑
i

∇fL(yi, fi) + λ∇fR(f)
1

n

41 / 52

Stochastic Gradient Descent

The first term looks like an empirical estimate (average) of the gradient
at

SGD then uses updates provided by a different estimate of the gradient
based on a single point.

Cheaper
Potentially unstable

∑
i

∇fL(yi, fi) + λ∇fR(f)
1

n

fi

42 / 52

Stochastic Gradient Descent
In practice

Mini-batches: use ~100 or so examples at a time to estimate
gradients
Shuffle data order every pass (epoch)

43 / 52

Stochastic Gradient Descent
This still presents challenges:

Choosing proper learning rate
How to update learning rate as iterations increase
Per-parameter learning rates
Avoiding local minima

44 / 52

Stochastic Gradient Descent
This still presents challenges:

Choosing proper learning rate
How to update learning rate as iterations increase
Per-parameter learning rates
Avoiding local minima

We will see modern derivatives of SGD that can address some of these
challenges

45 / 52

Avoid short-step oscillation in
SGD by incorporating
previous step information

SGD:

Momentum

w = w − η∇wL(y, w)

46 / 52

Avoid short-step oscillation in
SGD by incorporating
previous step information

SGD w/ momentum:

Momentum

vt = γvt−1 + η∇wL(y, w)

w = w − vt

47 / 52

Accelerated Momentum

vt = γvt−1 + η∇wL(y, w − γvt−1)

w = w − vt

48 / 52

Adaptive Moment Estimation (Adam)
Computes adaptive learning rates for each parameter in model

Updates based on exponentially decaying average of past squared
gradients (for adaptation)

vt = β2vt−1 + (1 − β2)(∇wL(y, w))2

49 / 52

Adaptive Moment Estimation (Adam)
Computes adaptive learning rates for each parameter in model

Updates based on exponentially decaying average of past squared
gradients (for adaptation)

And past gradients (for momentum)

vt = β2vt−1 + (1 − β2)(∇wL(y, w))2

mt = β1mt−1 + (1 − β1)∇wL(y, w)

50 / 52

Adaptive Moment Estimation (Adam)

w = w − mt
η

√vt + ϵ

51 / 52

Summary
Improved stablilty by exploiting 'estimation' interpretation of gradient
descent

Stabilize by aggregating estimates of gradients

Scaling by variance of estimates

Intepretation of algoritms in terms of estimators can greatly improve
performance

52 / 52

Numeric Optimization
Héctor Corrada Bravo

University of Maryland, College Park, USA
DATA606: 2020-04-19

Neural networks are a decades old
area of study.

Initially, these computational models
were created with the goal of
mimicking the processing of
neuronal networks.

Historical Overview

1 / 52

Inspiration: model neuron as
processing unit.

Some of the mathematical functions
historically used in neural network
models arise from biologically
plausible activation functions.

Historical Overview

2 / 52

Somewhat limited success in
modeling neuronal processing

Neural network models gained
traction as general Machine
Learning models.

Historical Overview

3 / 52

Historical Overview
Strong results about the ability of these models to approximate arbitrary
functions

Became the subject of intense study in ML.

In practice, effective training of these models was both technically and
computationally difficult.

4 / 52

Starting from 2005, technical
advances have led to a resurgence
of interest in neural networks,
specifically in Deep Neural
Networks.

Historical Overview

5 / 52

Deep Learning
Advances in computational processing:

powerful parallel processing given by Graphical Processing Units

6 / 52

Deep Learning
Advances in computational processing:

powerful parallel processing given by Graphical Processing Units

Advances in neural network architecture design and network
optimization

7 / 52

Deep Learning
Advances in computational processing:

powerful parallel processing given by Graphical Processing Units

Advances in neural network architecture design and network
optimization

Researchers apply Deep Neural Networks successfully in a number of
applications.

8 / 52

Self driving cars make use of Deep
Learning models for sensor
processing.

Deep Learning

9 / 52

Image recognition software uses
Deep Learning to identify individuals
within photos.

Deep Learning

10 / 52

Deep Learning models have been
applied to medical imaging to yield
expert-level prognosis.

Deep Learning

11 / 52

An automated Go player, making
heavy use of Deep Learning, is
capable of beating the best human
Go players in the world.

Deep Learning

12 / 52

Feed-forward Neural Networks
We will present the feed-forward neural network formulation for a general
case where we are modeling outcomes as

.
K Y1, … , Yk

f1(X), … , fK(X)

13 / 52

Feed-forward Neural Networks
In multi-class classification, categorical outcome may take multiple
values

We consider as a discriminant function for class ,

Final classification is made using . For regression, we can
take .

Yk k

arg maxk Yk

K = 1

14 / 52

Feed-forward Neural Networks
A single layer feed-forward neural network is defined as

hm = gh(w′
1mX), m = 1, … , M

 fk = gfk(w
′
2k

h), k = 1, … , K

15 / 52

The network is organized into input,
hidden and output layers.

Feed-forward Neural Networks

16 / 52

Feed-forward Neural Networks
Units represent a hidden layer,
which we can interpret as a derived
non-linear representation of the
input data as we saw before.

hm

17 / 52

Feed-forward Neural Networks
Function is an activation function
used to introduce non-linearity to
the representation.

gh

18 / 52

Historically, the
sigmoid activation
function was
commonly used

 or

the hyperbolic
tangent.

Feed-forward Neural Networks

gh(v) = 1
1+e−v

19 / 52

Nowadays, a rectified
linear unit (ReLU)

is used more
frequently in practice.
(there are many
extensions)

Feed-forward Neural Networks

gh(v) = max{0, v}

20 / 52

Feed-forward Neural Networks
Function used in the output layer
depends on the outcome modeled.

For classification a soft-max
function can be used

 where

.

For regression, we may take to
be the identify function.

gf

gfk(tk) = etk

∑
K

l=1 etk

tk = w′
2k

h

gfk

21 / 52

Deep Feed-Forward Neural Networks
The general form of feed-forward
network can be extended by adding
additional hidden layers.

22 / 52

Deep Feed-Forward Neural Networks
Empirically, it is found that by using
more, thinner, layers, better
expected prediction error is
obtained.

However, each layer introduces
more non-linearity into the network.

Making optimization markedly more
difficult.

23 / 52

Deep Feed-Forward Neural Networks
We may interpret hidden layers as
progressive derived representations
of the input data.

Since we train based on a loss-
function, these derived
representations should make
modeling the outcome of interest
progressively easier.

24 / 52

Deep Feed-Forward Neural Networks
In many applications, these derived
representations are used for model
interpretation.

25 / 52

Stochastic Gradient Descent
Many data analysis methods are thought of as optimization problems

We can design gradient-descent based optimization algorithms that
process data efficiently.

We will use linear regression as a case study of how this insight would
work.

26 / 52

Case Study

Let's use linear regression with one predictor, no intercept as a case
study.

Given: Training set , with continuous response
 and single predictor for the -th observation.

Do: Estimate parameter in model to solve

{(x1, y1), … , (xn, yn)}

yi xi i

w y = wx

min
w

L(w) =
n

∑
i=1

(yi − wxi)
21

2

27 / 52

Suppose we want to fit this model to
the following (simulated) data:

Case Study

28 / 52

Our goal is then to find the value of
(w) that minimizes mean squared
error. This corresponds to finding
one of these many possible lines.

Case Study

29 / 52

Each of which has a specific error
for this dataset:

Case Study

30 / 52

Case Study

1) Loss is minimized when the derivative of the loss function is 0

2) and, the derivative of the loss (with respect to) at a given estimate
 suggests new values of with smaller loss!

w

w w

31 / 52

Let's take a look at the
derivative:

Case Study

L(w) =

n

∑
i=1

(yi − wxi)
2

=
n

∑
i=1

(yi − wxi)(−xi)

∂

∂w

∂

∂w

1

2

32 / 52

Gradient Descent
This is what motivates the Gradient Descent algorithm

1. Initialize
2. Repeat until convergence

Set

With

w = normal(0, 1)

w = w + η∑
n
i=1(yi − f(xi; w))xi

f(xi; w) = wxi

33 / 52

Gradient Descent
The basic idea is to move the current estimate of in the direction that
minimizes loss the fastest.

w

34 / 52

Let's run GD and track what it does:

Gradient Descent

35 / 52

Gradient Descent
"Batch" gradient descent: take a step (update) by calculating
derivative with respect to all observations in our dataset.

where .

w

n

w = w + η

n

∑
i=1

(yi − f(xi; w))xi

f(xi) = wxi

36 / 52

Gradient Descent
For multiple predictors (e.g., adding an intercept), this generalizes to the
gradient

where

w = w + η

n

∑
i=1

(yi − f(xi; w))xi

f(xi; w) = w0 + w1xi1 + ⋯ + wpxip

37 / 52

Gradient Descent
Gradiest descent falls within a family of optimization methods called first-
order methods (first-order means they use derivatives only). These
methods have properties amenable to use with very large datasets:

1. Inexpensive updates
2. "Stochastic" version can converge with few sweeps of the data
3. "Stochastic" version easily extended to streams
4. Easily parallelizable

Drawback: Can take many steps before converging

38 / 52

Stochastic Gradient Descent
Key Idea: Update parameters using update equation one observation at
a time:

1. Initialize ,
2. Repeat until convergence

For to
Set

w = normal(0, √p) i = 1

i = 1 n

w = w + η(yi − f(xi; w))xi

39 / 52

Let's run this and see what it does:

Stochastic Gradient Descent

40 / 52

Stochastic Gradient Descent
Why does SGD make sense?

For many problems we are minimizing a cost function of the type

Which in general has gradient

arg min
f

∑
i

L(yi, fi) + λR(f)
1

n

∑
i

∇fL(yi, fi) + λ∇fR(f)
1

n

41 / 52

Stochastic Gradient Descent

The first term looks like an empirical estimate (average) of the gradient
at

SGD then uses updates provided by a different estimate of the gradient
based on a single point.

Cheaper
Potentially unstable

∑
i

∇fL(yi, fi) + λ∇fR(f)
1

n

fi

42 / 52

Stochastic Gradient Descent
In practice

Mini-batches: use ~100 or so examples at a time to estimate
gradients
Shuffle data order every pass (epoch)

43 / 52

Stochastic Gradient Descent
This still presents challenges:

Choosing proper learning rate
How to update learning rate as iterations increase
Per-parameter learning rates
Avoiding local minima

44 / 52

Stochastic Gradient Descent
This still presents challenges:

Choosing proper learning rate
How to update learning rate as iterations increase
Per-parameter learning rates
Avoiding local minima

We will see modern derivatives of SGD that can address some of these
challenges

45 / 52

Avoid short-step oscillation in
SGD by incorporating
previous step information

SGD:

Momentum

w = w − η∇wL(y, w)

46 / 52

Avoid short-step oscillation in
SGD by incorporating
previous step information

SGD w/ momentum:

Momentum

vt = γvt−1 + η∇wL(y, w)

w = w − vt

47 / 52

Accelerated Momentum

vt = γvt−1 + η∇wL(y, w − γvt−1)

w = w − vt

48 / 52

Adaptive Moment Estimation (Adam)
Computes adaptive learning rates for each parameter in model

Updates based on exponentially decaying average of past squared
gradients (for adaptation)

vt = β2vt−1 + (1 − β2)(∇wL(y, w))2

49 / 52

Adaptive Moment Estimation (Adam)
Computes adaptive learning rates for each parameter in model

Updates based on exponentially decaying average of past squared
gradients (for adaptation)

And past gradients (for momentum)

vt = β2vt−1 + (1 − β2)(∇wL(y, w))2

mt = β1mt−1 + (1 − β1)∇wL(y, w)

50 / 52

Adaptive Moment Estimation (Adam)

w = w − mt

η

√vt + ϵ

51 / 52

Summary
Improved stablilty by exploiting 'estimation' interpretation of gradient
descent

Stabilize by aggregating estimates of gradients

Scaling by variance of estimates

Intepretation of algoritms in terms of estimators can greatly improve
performance

52 / 52

