Colon HypolHyper-methylation	Hypo/Hyper-metl	ylated Blocks (Methylatic	on Difference)		
6 101.6M 101.6M 1	102 M 102 AM	102.6M 102.8M	103м 103 2м	103.4M 1	
	Methylation for Colon Tiss	102 EM 102.4M	rpe (Normal vs Tumor)		

Numeric Optimization

Héctor Corrada Bravo

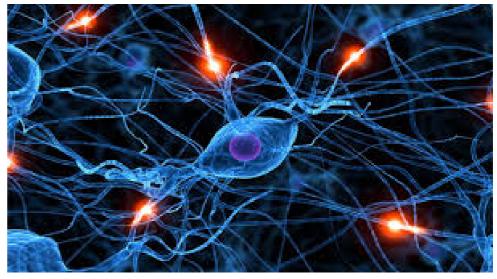
University of Maryland, College Park, USA DATA606: 2020-04-19

Neural networks are a decades old area of study.

Initially, these computational models were created with the goal of mimicking the processing of neuronal networks.

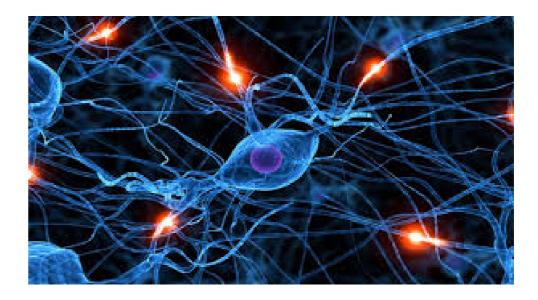
Inspiration: model neuron as processing unit.

Some of the mathematical functions historically used in neural network models arise from biologically plausible activation functions.



Somewhat limited success in modeling neuronal processing

Neural network models gained traction as general Machine Learning models.



Strong results about the ability of these models to approximate arbitrary functions

Became the subject of intense study in ML.

In practice, effective training of these models was both technically and computationally difficult.

Starting from 2005, technical advances have led to a resurgence of interest in neural networks, specifically in *Deep Neural Networks*.

Advances in computational processing:

• powerful parallel processing given by Graphical Processing Units

Advances in computational processing:

• powerful parallel processing given by Graphical Processing Units

Advances in neural network architecture design and network optimization

Advances in computational processing:

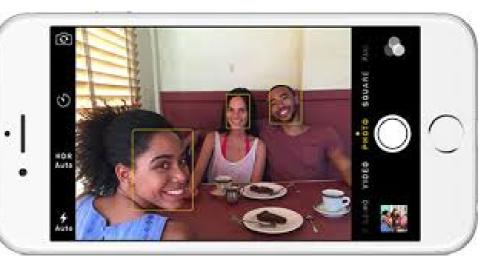
• powerful parallel processing given by Graphical Processing Units

Advances in neural network architecture design and network optimization

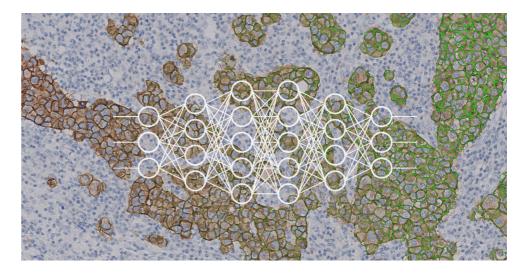
Researchers apply Deep Neural Networks successfully in a number of applications.

Self driving cars make use of Deep Learning models for sensor processing.

Image recognition software uses Deep Learning to identify individuals within photos.



Deep Learning models have been applied to medical imaging to yield expert-level prognosis.



An automated Go player, making heavy use of Deep Learning, is capable of beating the best human Go players in the world.

We will present the feed-forward neural network formulation for a general case where we are modeling K outcomes Y_1, \ldots, Y_k as $f_1(X), \ldots, f_K(X)$.

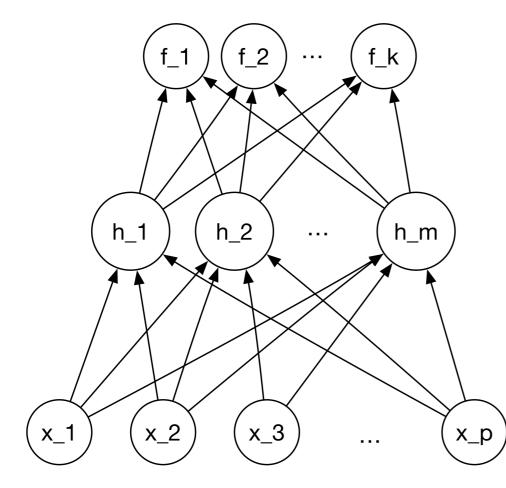
In multi-class classification, categorical outcome may take multiple values

We consider Y_k as a discriminant function for class k,

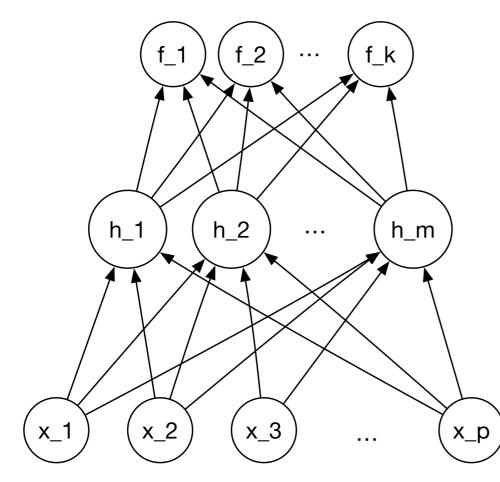
Final classification is made using $\arg \max_k Y_k$. For regression, we can take K = 1.

A single layer feed-forward neural network is defined as

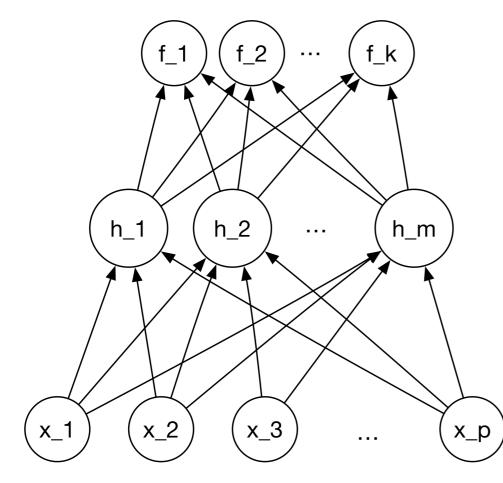
$$egin{aligned} h_m &= g_h(\mathbf{w}_{1m}'X), \; m = 1, \dots, M \ f_k &= g_{fk}(\mathbf{w}_{2k}'\mathbf{h}), \; k = 1, \dots, K \end{aligned}$$



The network is organized into *input*, *hidden* and *output* layers.



Units h_m represent a *hidden layer*, which we can interpret as a *derived* non-linear representation of the input data as we saw before.



Function g_h is an *activation* function used to introduce non-linearity to the representation.

Historically, the 0 ReLU sigmoid sigmoid activation tanh function was 0.5 commonly used $g_h(v)=rac{1}{1+e^{-v}}$ or gh(z) 0.0 the hyperbolic tangent. -0.5

-1.0

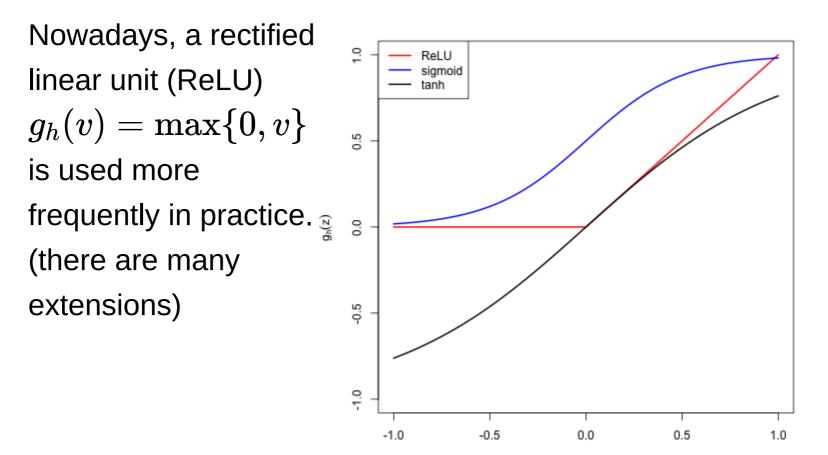
-1.0

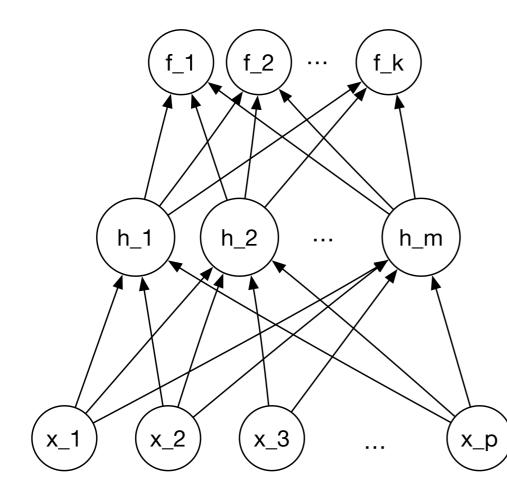
0.0

0.5

1.0

-0.5

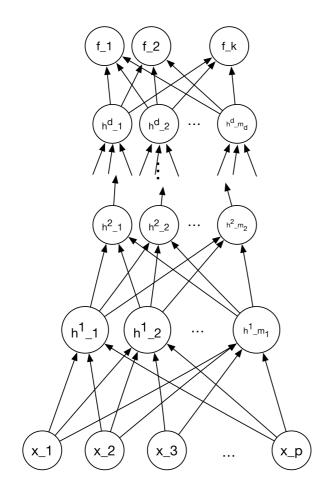




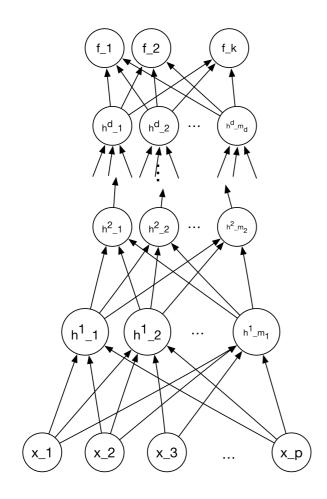
Function g_f used in the output layer depends on the outcome modeled.

For classification a *soft-max* function can be used $g_{fk}(t_k) = \frac{e^{t_k}}{\sum_{l=1}^{K} e^{t_k}}$ where $t_k = \mathbf{w}'_{2k}\mathbf{h}.$

For regression, we may take g_{fk} to be the identify function.



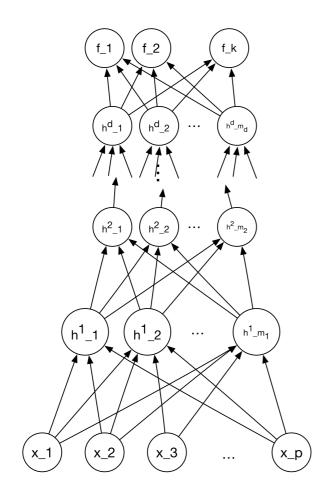
The general form of feed-forward network can be extended by adding additional *hidden layers*.



Empirically, it is found that by using more, thinner, layers, better expected prediction error is obtained.

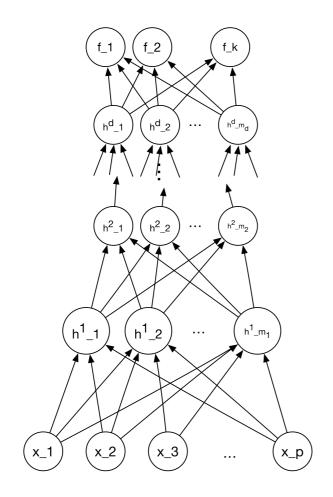
However, each layer introduces more non-linearity into the network.

Making optimization markedly more difficult.



We may interpret hidden layers as progressive derived representations of the input data.

Since we train based on a lossfunction, these derived representations should make modeling the outcome of interest progressively easier.



In many applications, these derived representations are used for model interpretation.

Stochastic Gradient Descent

Many data analysis methods are thought of as **optimization problems**

We can design gradient-descent based optimization algorithms that process data efficiently.

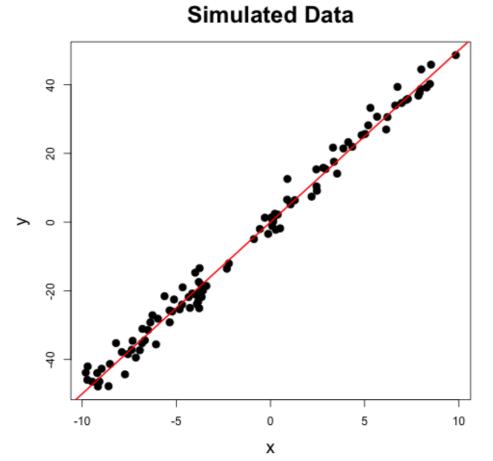
We will use linear regression as a case study of how this insight would work.

Let's use linear regression with one predictor, no intercept as a case study.

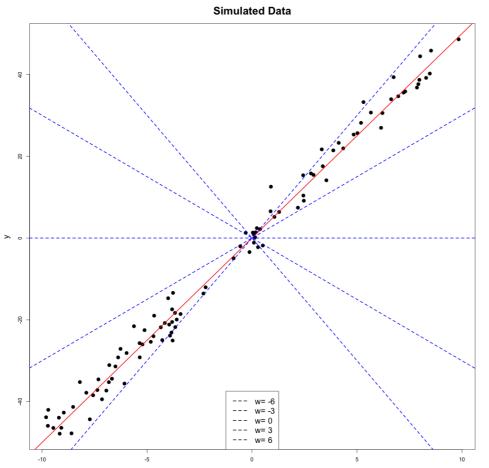
Given: Training set $\{(x_1, y_1), \ldots, (x_n, y_n)\}$, with continuous response y_i and single predictor x_i for the *i*-th observation.

Do: Estimate parameter w in model y = wx to solve

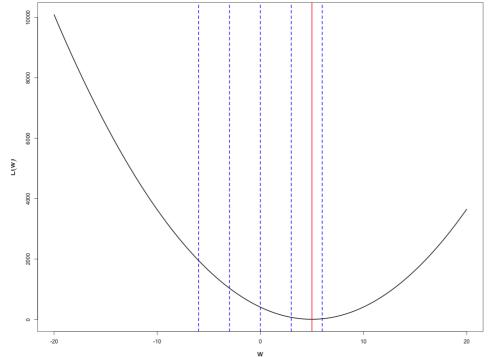
$$\min_w L(w) = rac{1}{2}\sum_{i=1}^n (y_i-wx_i)^2$$



Suppose we want to fit this model to the following (simulated) data:



Our goal is then to find the value of (w) that minimizes mean squared error. This corresponds to finding one of these many possible lines.



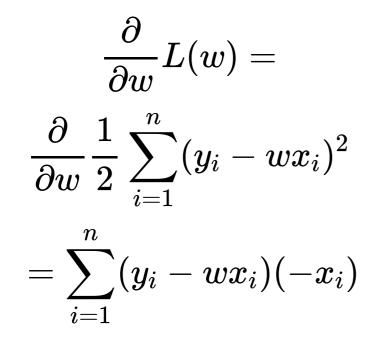
Each of which has a specific error

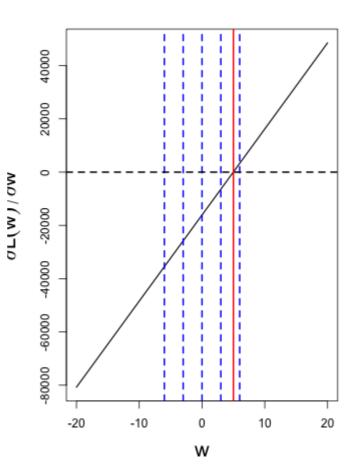
for this dataset:

1) Loss is minimized when the derivative of the loss function is 0

2) and, the derivative of the loss (with respect to w) at a given estimate w suggests new values of w with smaller loss!

Let's take a look at the derivative:





Gradient Descent

This is what motivates the Gradient Descent algorithm

- 1. Initialize $w = \operatorname{normal}(0, 1)$
- 2. Repeat until convergence

$$\circ$$
 Set $w = w + \eta \sum_{i=1}^n (y_i - f(x_i;w)) x_i$

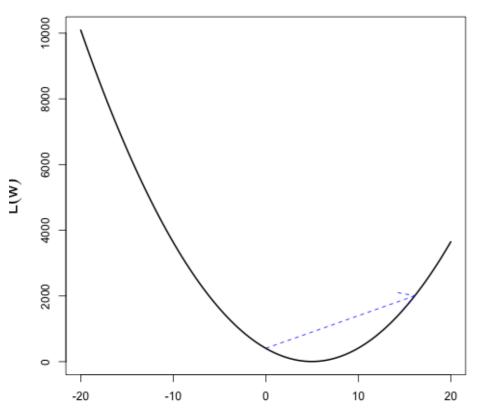
With $f(x_i;w) = wx_i$

Gradient Descent

The basic idea is to move the current estimate of w in the direction that minimizes loss the *fastest*.

Gradient Descent

Let's run GD and track what it does:



Gradient Descent

w

Gradient Descent

"Batch" gradient descent: take a step (update w) by calculating derivative with respect to *all* n observations in our dataset.

$$w=w+\eta\sum_{i=1}^n(y_i-f(x_i;w))x_i$$

where $f(x_i) = w x_i$.

Gradient Descent

For multiple predictors (e.g., adding an intercept), this generalizes to the *gradient*

$$\mathbf{w} = \mathbf{w} + \eta \sum_{i=1}^n (y_i - f(\mathbf{x}_i; \mathbf{w})) \mathbf{x}_i$$

where
$$f(\mathbf{x}_i;\mathbf{w}) = w_0 + w_1 x_{i1} + \dots + w_p x_{ip}$$
 ,

Gradient Descent

Gradiest descent falls within a family of optimization methods called *first-order methods* (first-order means they use derivatives only). These methods have properties amenable to use with very large datasets:

- 1. Inexpensive updates
- 2. "Stochastic" version can converge with few sweeps of the data
- 3. "Stochastic" version easily extended to streams
- 4. Easily parallelizable

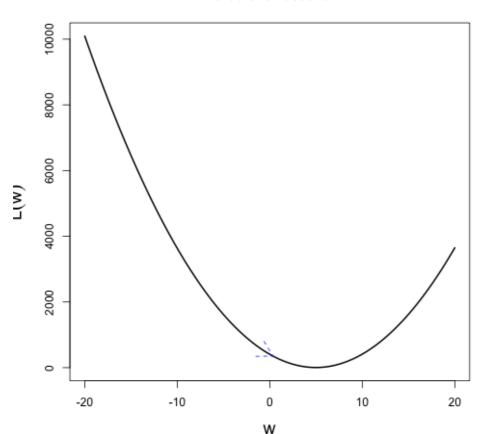
Drawback: Can take many steps before converging

Key Idea: Update parameters using update equation *one observation at a time*:

- 1. Initialize $\mathbf{w} = \mathrm{normal}(0,\sqrt{p})$, i=1
- 2. Repeat until convergence
 - $\circ\,$ For i=1 to n

$$\circ$$
 Set $\mathbf{w} = \mathbf{w} + \eta(y_i - f(\mathbf{x}_i; \mathbf{w}))\mathbf{x}_i$

Let's run this and see what it does:



Gradient Descent

Why does SGD make sense?

For many problems we are minimizing a cost function of the type

$$rgmin_f rac{1}{n}\sum_i L(y_i,f_i) + \lambda R(f)$$

Which in general has gradient

$$rac{1}{n}\sum_i
abla_f L(y_i,f_i) + \lambda
abla_f R(f)$$

$$rac{1}{n}\sum_i
abla_f L(y_i,f_i) + \lambda
abla_f R(f)$$

The first term looks like an empirical estimate (average) of the gradient at f_i

SGD then uses updates provided by a different *estimate* of the gradient based on a single point.

- Cheaper
- Potentially unstable

In practice

- Mini-batches: use ~100 or so examples at a time to estimate gradients
- Shuffle data order every pass (epoch)

This still presents challenges:

- Choosing proper learning rate
- How to update learning rate as iterations increase
- Per-parameter learning rates
- Avoiding local minima

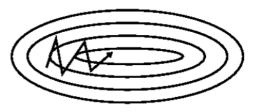
This still presents challenges:

- Choosing proper learning rate
- How to update learning rate as iterations increase
- Per-parameter learning rates
- Avoiding local minima

We will see modern derivatives of SGD that can address some of these challenges

Momentum

Avoid short-step oscillation in SGD by incorporating previous step information



(a) SGD without momentum

(b) SGD with momentum

Figure 2: Source: Genevieve B. Orr

SGD:

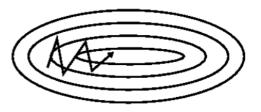
 $w=w-\eta
abla_w L(y,w)$

Momentum

Avoid short-step oscillation in SGD by incorporating previous step information

SGD w/ momentum:

$$egin{aligned} v_t &= \gamma v_{t-1} + \eta
abla_w L(y,w) \ &w &= w - v_t \end{aligned}$$



(a) SGD without momentum

(b) SGD with momentum

Figure 2: Source: Genevieve B. Orr

Accelerated Momentum

brown vector = jump, red vector = correction, green vector = accumulated gradient

blue vectors = standard momentum

$$egin{aligned} v_t &= \gamma v_{t-1} + \eta
abla_w L(y,w-\gamma v_{t-1}) \ &w &= w-v_t \end{aligned}$$

Adaptive Moment Estimation (Adam)

Computes adaptive learning rates for each parameter in model

Updates based on exponentially decaying average of past squared gradients (for adaptation)

$$v_t=eta_2 v_{t-1}+(1-eta_2)(
abla_w L(y,w))^2$$

Adaptive Moment Estimation (Adam)

Computes adaptive learning rates for each parameter in model

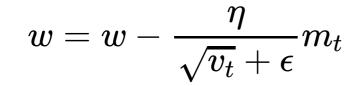
Updates based on exponentially decaying average of past squared gradients (for adaptation)

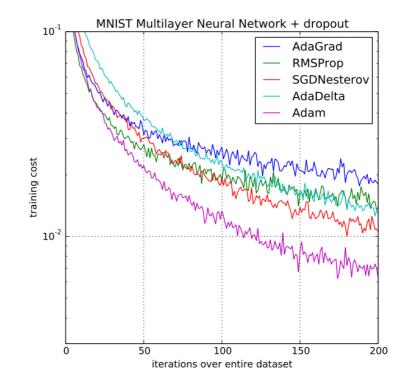
$$v_t=eta_2 v_{t-1}+(1-eta_2)(
abla_w L(y,w))^2$$

And past gradients (for momentum)

$$m_t = eta_1 m_{t-1} + (1-eta_1)
abla_w L(y,w)$$

Adaptive Moment Estimation (Adam)





Summary

- Improved stablilty by exploiting 'estimation' interpretation of gradient descent
- Stabilize by aggregating estimates of gradients
- Scaling by variance of estimates
- Intepretation of algoritms in terms of estimators can greatly improve performance