

Network Analysis

Héctor Corrada Bravo

University of Maryland, College Park, USA DATA606 2020-04-07

Genetic Interaction Network

- Yeast high-throuput doubleknockdown assay
- ~5000 genes
- ~800k interactions

http://www.geneticinteractions.org/

Costanzo et al. (2016) Science. DOI: 10.1126/science.aaf1420

Genetic Interaction Network

- Yeast high-throuput doubleknockdown assay
- ~5000 genes
- ~800k interactions

http://www.geneticinteractions.org/

Costanzo et al. (2016) Science. DOI: 10.1126/science.aaf1420

Genetic Interaction Network

- Number of vertices: 2803
- Number of edges: 67,268

Preliminaries

Network: abstraction of *entities* and their interactions Graph: mathematical representation

vertices: nodes *edges*: links

Undirected graph

Preliminaries

Network: abstraction of *entities* and their interactions Graph: mathematical representation

vertices: nodes *edges*: links Directed graph

Number of vertices: n

In our example: *number of genes*

Number of vertices: n

In our example: *number of genes*

Number of edges: m

In our example: *number of genetic interactions*

Number of vertices: n

In our example: *number of genes*

Number of edges: m

In our example: *number of genetic interactions*

Degree of vertex $i: k_i$

Number of genetic interactions for gene i

On the board:

- Calculate number of edges m using degrees k_i (for both directed and undirected networks)
- Calculate *average degree* c
- Calculate *density* ρ

On the board:

- Calculate number of edges m using degrees k_i (for both directed and undirected networks)
- Calculate *average degree* c
- Calculate *density* ρ

In our example:

Average degree: 47.9971459 Density: 0.0171296

(On the board)

Number of edges using degrees (undirected)

$$m=rac{1}{2}\sum_{i=1}^n k_i$$

Number of edges using degrees (directed)

$$m = \sum_{i=1}^n k_i^{ ext{in}} = \sum_{i=1}^n k_i^{ ext{out}}$$

(On the board)

Average degree

$$c=rac{1}{n}\sum_{i=1}^n k_i$$

Density

$$ho=rac{m}{{n\choose 2}}=rac{2m}{n(n-1)}=rac{c}{n-1}pproxrac{c}{n}$$

12 / 55

Degree distribution

Fundamental analytical tool to characterize networks

 p_k : probability randomly chosen vertex has degree k

On the board: how to calculate p_k and how to calculate average degree c using degree distribution.

Frequency

Degree Distribution

(On the board)

Degree distribution

$$p_k = rac{n_k}{n}$$

 n_k : number of nodes in graph with degree k

Degree Distribution

log(p_k)

٠ 3. 2 5 0 3 6 1 4

log/log degree distribution

15 / 55

Paths and Distances

Distance d_{ij} : length of shortest path betwen vertices i and j.

Paths and Distances

Distance d_{ij} : length of shortest path betwen vertices i and j.

Diameter. longest shortest path $\max_{ij} d_{ij}$

Paths and Distances

Distance d_{ij} : length of shortest path betwen vertices i and j.

On the board: average path length

(On the board)

Average path length

$$\overline{d} = rac{1}{n(n-1)} \sum_{i,j; i
eq j} d_{ij}$$

Distance Distribution

By convention: if there is no path between vertices i and j then $d_{ij} = \infty$

By convention: if there is no path between vertices i and j then $d_{ij} = \infty$

Vertices i and j are *connected* if $d_{ij} < \infty$

By convention: if there is no path between vertices i and j then $d_{ij} = \infty$

Vertices i and j are *connected* if $d_{ij} < \infty$

Graph is connected if $d_{ij} < \infty$ for all i, j

By convention: if there is no path between vertices i and j then $d_{ij} = \infty$

Vertices i and j are *connected* if $d_{ij} < \infty$

Graph is connected if $d_{ij} < \infty$ for all i, j

Components maximal subset of connected components

Components

Clustering Coefficient

Another quantity of interest: how dense is the neighborhood around vertex i?

Do the genes that interact with me also interact with each other?

Related to the *locality* property.

Definition on the board

(On the board)

Clustering coefficient

$$c_i = rac{2m_i}{k_i(k_i-1)}$$

 m_i : number of edges between neighbors of vertex i

Clustering coefficient

28 / 55

Adjacency Matrix

Undirected graph

29 / 55

Adjacency Matrix

On the board:

- Definition
- Computing degree with adj. matrix
- Computing num. edges *m* with adj. matrix
- Computing paths with adj. matrix

Adjacency Matrix

Directed graph

31 / 55

Edges are assigned a weight indicating quantitative property of interaction

Edges are assigned a weight indicating quantitative property of interaction

- Strength of genetic interaction (evidence from experiment)
- Rates in a metabolic network
- Spatial distance in an ecological network

Edges are assigned a weight indicating quantitative property of interaction

- Strength of genetic interaction (evidence from experiment)
- Rates in a metabolic network
- Spatial distance in an ecological network

Adjacency matrix contains weights instead of 0/1 entries

Edges are assigned a weight indicating quantitative property of interaction

- Strength of genetic interaction (evidence from experiment)
- Rates in a metabolic network
- Spatial distance in an ecological network

Adjacency matrix contains weights instead of 0/1 entries

Path lengths are the sum of edge weights in a path

Hypergraphs

Edges connect more than two vertices

A Protein-protein interaction network

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000385

Trees

Acyclic graphs

Single path between any pair of vertices

https://www.sciencedirect.com/science/article/pii/S0981942817304321

We use an *Incidence Matrix B* instead of *Adjacency Matrix*

(On the board): definition

Projections

vertex projection: P_{ij} , num. of groups in which vertices i and j co-occur *group projection*: P'_{ij} , num. of members groups i and j share

Projections

vertex projection: P_{ij} , num. of groups in which vertices i and j co-occur *group projection*: P'_{ij} , num. of members groups i and j share (On the board)

$$P = B^T B$$

 $P' = B B^T$

Centrality

What are the *important* nodes in the network?

What are *central* nodes in the network?

Centrality

Undirected Graphs

• Eigenvalue Centrality

Directed Graphs

- Katz Centrality
- Pagerank

Centrality

Betweenness

What are the *important* edges in the network?

What are edges that may connect clusters of nodes in the network?

Betweenness

Girvan-Newman Algorithm hierarchical method to partition nodes into communities using edge betweenness

Two phases:

Phase One: Compute betweenness for every edge Phase Two: Discover communities by removing *high* betweenness edges (similar to hierarchical clustering)

Calculating Betweenness

Formally, betweenness(e): fraction of node pairs (x, y) where shortest path crosses edge e

Path Counting: For each vertex x, use breadth-first-search to count number of shortest paths through each edge e in graph between x and every other vertex y.

Sum result across vertices for each edge e, and divide by two

Sum result across nodes, and divide by two

Counting Paths

Algorithm (starting from node x)

- 1. Construct breadth-first search tree
- 2. (Root->Leaf) Label each vertex v with the number of shortest paths between x and v: sum of labels of parents
- 3. (Leaf->Root) Count the (weighted) number of shortest paths that go through each edge: next slide

Counting Paths

Step 3, counting number of shortest paths through each edge

a. Leafs v in search tree get a *credit* of $C_v = 1$

b. Incoming edge $e_i = (y_i, v)$ to vertex v in search tree gets *credit* $C_{e_i} = C_v * rac{p_i}{\sum_j p_j}$

- p_i : number of shortest paths between x and y_i (computed in Step 2)
- sum \sum_j is over parents of v

Counting Paths

c. Non-leaf vertex v gets credit $C_v = 1 + \sum_j e_j$ where sum j is over outgoing edges e_j in search tree

Example

Cross-language

igraph: http://igraph.org/

Resources

R

Workhorses:

- igraph
- Rgraphviz

Tidyverse (https://tidyverse.org):

- tidygraph
- ggraph

Resources

Python

- igraph
- networkx