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Number of vertices: 2803
Number of edges: 67,268
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Network: abstraction of
entities and their interactions
Graph: mathematical
representation

vertices: nodes
edges: links
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Network statistics: notation
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Calculate number of edges  using degrees  (for both directed and
undirected networks)

Calculate average degree 

Calculate density 
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Network statistics: notation
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(On the board)
Number of edges using degrees (undirected)

Number of edges using degrees (directed)

m =
n

∑
i=1

ki
1

2

m =
n

∑
i=1

kin
i =

n

∑
i=1

kout
i

11 / 55

(On the board)
Average degree
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Fundamental analytical tool to
characterize networks

: probability randomly chosen
vertex has degree 

On the board: how to calculate 
and how to calculate average
degree  using degree distribution.

Degree distribution

pk
k

pk

c
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(On the board)
Degree distribution

: number of nodes in graph with degree 

pk =
nk

n

nk k
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Degree Distribution
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Distance : length of
shortest path betwen
vertices  and .

Paths and Distances

dij

i j
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Distance : length of
shortest path betwen
vertices  and .

On the board: average path
length

Paths and Distances

dij
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(On the board)
Average path length

¯̄̄
d = ∑

i,j;i≠j

dij
1

n(n − 1)
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Distance Distribution
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Distances and paths
By convention: if there is no path between vertices  and  then i j dij = ∞
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Distances and paths
By convention: if there is no path between vertices  and  then 

Vertices  and  are connected if 

Graph is connected if  for all , 

Components maximal subset of connected components

i j dij = ∞

i j dij < ∞

dij < ∞ i j
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Components
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Clustering Coe�cient
Another quantity of interest: how dense is the neighborhood around
vertex ?

Do the genes that interact with me also interact with each other?

Related to the locality property.

Definition on the board

i
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(On the board)
Clustering coefficient

: number of edges between neighbors of vertex 

ci =
2mi

ki(ki − 1)

mi i
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Clustering coe�cient
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Adjacency Matrix
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On the board:

Definition
Computing degree with adj.
matrix
Computing num. edges  with
adj. matrix
Computing paths with adj. matrix

Adjacency Matrix

m
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Adjacency Matrix
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Weighted networks
Edges are assigned a weight indicating quantitative property of
interaction
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Weighted networks
Edges are assigned a weight indicating quantitative property of
interaction

Strength of genetic interaction (evidence from experiment)

Rates in a metabolic network

Spatial distance in an ecological network

Adjacency matrix contains weights instead of 0/1 entries

Path lengths are the sum of edge weights in a path
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https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000385

Hypergraphs
Edges connect more than two vertices
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Acyclic graphs

Single path between any pair of
vertices

https://www.sciencedirect.com/science/article/pii/S0981942817304321

Trees
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Bipartite Networks
We use an Incidence Matrix  instead of Adjacency Matrix

(On the board): definition

B
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Bipartite Networks

Projections

vertex projection: , num. of groups in which vertices  and  co-occur

group projection: , num. of members groups  and  share

Pij i j

P ′
ij i j
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Bipartite Networks

Projections

vertex projection: , num. of groups in which vertices  and  co-occur

group projection: , num. of members groups  and  share
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What are the important
nodes in the network?

What are central nodes in
the network?

Centrality
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Centrality

Undirected Graphs

Eigenvalue Centrality

Directed Graphs

Katz Centrality
Pagerank
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What are the important
edges in the network?

What are edges that may
connect clusters of nodes in
the network?

Betweenness
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Girvan-Newman Algorithm -
hierarchical method to
partition nodes into
communities using edge
betweenness

Betweenness
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Girvan-Newman Algorithm
Two phases:

Phase One: Compute betweenness for every edge
Phase Two: Discover communities by removing high betweenness
edges (similar to hierarchical clustering)
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Girvan-Newman Algorithm

Calculating Betweenness

Formally, : fraction of node pairs  where shortest
path crosses edge 

Path Counting: For each vertex , use breadth-first-search to count
number of shortest paths through each edge  in graph between  and
every other vertex .

Sum result across vertices for each edge , and divide by two

Sum result across nodes, and divide by two

betweenness(e) (x, y)

e

x

e x

y

e
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Girvan-Newman Algorithm

Counting Paths

Algorithm (starting from node )

1. Construct breadth-first search tree
2. (Root->Leaf) Label each vertex  with the number of shortest paths

between  and : sum of labels of parents
3. (Leaf->Root) Count the (weighted) number of shortest paths that go

through each edge: next slide

x

v

x v
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Girvan-Newman Algorithm

Counting Paths

Step 3, counting number of shortest paths through each edge

a. Leafs  in search tree get a credit of 

b. Incoming edge  to vertex  in search tree gets credit 

: number of shortest paths between  and  (computed in Step 2)
sum  is over parents of 

v Cv = 1

ei = (yi, v) v

Cei = Cv ∗
pi

∑j pj

pi x yi
∑j v
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Girvan-Newman Algorithm

Counting Paths

c. Non-leaf vertex  gets credit  where sum  is over

outgoing edges  in search tree

v Cv = 1 + ∑j ej j

ej
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Girvan-Newman Algorithm

Example

52 / 55

Resources

Cross-language

igraph: http://igraph.org/
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Resources

R

Workhorses:

igraph
Rgraphviz

Tidyverse (https://tidyverse.org):

tidygraph
ggraph
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Resources

Python

igraph
networkx
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Clustering Coe�cient
Another quantity of interest: how dense is the neighborhood around
vertex ?

Do the genes that interact with me also interact with each other?

Related to the locality property.

Definition on the board
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Hypergraphs
Edges connect more than two vertices
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Girvan-Newman Algorithm

Calculating Betweenness

Formally, : fraction of node pairs  where shortest
path crosses edge 

Path Counting: For each vertex , use breadth-first-search to count
number of shortest paths through each edge  in graph between  and
every other vertex .

Sum result across vertices for each edge , and divide by two

Sum result across nodes, and divide by two
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Girvan-Newman Algorithm

Counting Paths

Algorithm (starting from node )

1. Construct breadth-first search tree
2. (Root->Leaf) Label each vertex  with the number of shortest paths

between  and : sum of labels of parents
3. (Leaf->Root) Count the (weighted) number of shortest paths that go

through each edge: next slide
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Counting Paths

Step 3, counting number of shortest paths through each edge

a. Leafs  in search tree get a credit of 
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Girvan-Newman Algorithm

Counting Paths

c. Non-leaf vertex  gets credit  where sum  is over

outgoing edges  in search tree

v Cv = 1 +∑j ej j
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