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Genetic Interaction Network

e Yeast high-throuput double-
knockdown assay

e ~5000 genes

e ~800K interactions

http://www.geneticinteractions.org/

Costanzo et al. (2016) Science. DOI: 10.1126/science.aaf1420
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e Yeast high-throuput double-
knockdown assay

e ~5000 genes

e ~800K interactions
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Genetic Interaction Network

e Number of vertices: 2803
 Number of edges: 67,268
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Preliminaries

Network: abstraction of
entities and their interactions
Graph: mathematical
representation

vertices: nodes
edges. links

Undirected graph
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Preliminaries

. Directed graph
Network: abstraction of

entities and their interactions
Graph: mathematical
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Network statistics: notation
Number of vertices: n

In our example: number of genes
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Network statistics: notation
Number of vertices: n

In our example: number of genes
Number of edges: m

In our example: number of genetic interactions
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Network statistics: notation
Number of vertices: n

In our example: number of genes

Number of edges: m

In our example: number of genetic interactions
Degree of vertex 7: k;

Number of genetic interactions for gene 1
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Network statistics: notation
On the board:

 Calculate number of edges m using degrees k; (for both directed and
undirected networks)

e Calculate average degree c

e Calculate density p
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Network statistics: notation
On the board:

 Calculate number of edges m using degrees k; (for both directed and
undirected networks)

e Calculate average degree c
e Calculate density p
In our example:

Average degree: 47.9971459
Density: 0.0171296 10 / 55



(On the board)

Number of edges using degrees (undirected)

1=1

Number of edges using degrees (directed)

n n
_ in __ out
m = E k' = E k;
1=1

1=1
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(On the board)

Average degree

Density
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Degree distribution

Fundamental analytical tool to
characterize networks

Pr. probability randomly chosen
vertex has degree k

On the board: how to calculate pg
and how to calculate average

degree c using degree distribution.

Frequency

800 1000
l

600
l

Degree Distribution

} N =

100

200

Degree

300
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(On the board)

Degree distribution

ni: number of nodes in graph with degree k
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Degree Distribution

log/log degree distribution

. . ® e . »
* T
. b A
g
. 2
4
2
L
— L]
5 o
- -l
- B
[ ]
L1 7]
L X ]
- e
a8 B @
ST
Ly N X I
[ | | | I I
0 1 2 3 4 5 B

15/ 55



Paths and Distances

Distance d;;: length of
shortest path betwen
vertices 7 and .
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Paths and Distances

Distance d;;: length of
shortest path betwen
vertices 7 and .

Diameter. longest shortest
path max,; dz'j
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Paths and Distances

Distance d;;: length of
shortest path betwen
vertices 7 and .

R
e

On the board: average path
length
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(On the board)

Average path length
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Distance Distribution

log (pdist)
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Distances and paths

By convention: if there is no path between vertices ¢ and j then d;; = oo
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Distances and paths

By convention: if there is no path between vertices ¢ and j then d;; = oo

Vertices © and j are connected if d;; < oo
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Distances and paths

By convention: if there is no path between vertices ¢ and j then d;; = oo
Vertices © and j are connected if d;; < oo

Graph is connected if d;; < oo forall ¢, j
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Distances and paths

By convention: if there is no path between vertices ¢ and j then d;; = oo
Vertices © and j are connected if d;; < oo
Graph is connected if d;; < oo forall ¢, j

Components maximal subset of connected components
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Components
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Clustering Coefficient

Another quantity of interest: how dense is the neighborhood around
vertex 1?

Do the genes that interact with me also interact with each other?
Related to the /ocality property.

Definition on the board

26 [ 55



(On the board)

Clustering coefficient

Zmi

ki(ki —1)

C; —

m;: number of edges between neighbors of vertex 2

2755



Clustering coefficient
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Adjacency Matrix
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Adjacency Matrix

On the board: et e Ty
v L
« Definition : X '-'-."-:;
e Computing degree with adj. . ﬂ;
matrix ._1 |._.._
e Computing num. edges m with . ,.,.:I_I..
adj. matrix ...-.*1-
« Computing paths with adj. matrix Falp LI
"."'-.,E . .
YU
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Adjacency Matrix

Directed graph
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Weighted networks

Edges are assigned a weight indicating quantitative property of
Interaction
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Weighted networks

Edges are assigned a weight indicating quantitative property of
Interaction

e Strength of genetic interaction (evidence from experiment)
e Rates in a metabolic network

e Spatial distance in an ecological network
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Weighted networks

Edges are assigned a weight indicating quantitative property of
Interaction

e Strength of genetic interaction (evidence from experiment)
e Rates in a metabolic network
e Spatial distance in an ecological network

Adjacency matrix contains weights instead of 0/1 entries
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Weighted networks

Edges are assigned a weight indicating quantitative property of
Interaction

e Strength of genetic interaction (evidence from experiment)
e Rates in a metabolic network
e Spatial distance in an ecological network

Adjacency matrix contains weights instead of 0/1 entries

Path lengths are the sum of edge weights in a path

35/55



Hypergraphs

Edges connect more than two vertices

A Protein-protein interaction network

NGO, ) @
®

C, ={A,B,C,D}
Cy, ={A,E} —]
Cs ={C,E}

- o8

Hypergraph Graph

https.//journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000385
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https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000385

Trees

Acyclic graphs

Single path between any pair of
vertices

https.//www.sciencedirect.com/science/article/pli/S098194281 7304321
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https://www.sciencedirect.com/science/article/pii/S0981942817304321

Bipartite Networks

C Reaction networks

Rl:AHB
R22A+B—’C+D

—
R3;D—>E

Bipartite graph
Ry Ry R3

A/-1 -1 0 R
B 1 -1 0 @
clo 1 o0 @ \
D 0 1 -1 |stoichiometric
F 0

0 1 /matrix Hypergraph o e

Substrate graph @
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Bipartite Networks
We use an Incidence Matrix B instead of Adjacency Matrix

(On the board): definition
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Bipartite Networks

Projections
vertex projection: P;;, num. of groups in which vertices ¢ and j co-occur

group projection: PZ’] num. of members groups 7 and j share
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Bipartite Networks
Projections
vertex projection: P;;, num. of groups in which vertices ¢ and j co-occur
group projection: PZ’] num. of members groups 7 and j share
(On the board)
P=B'B
P' = BB*
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Centrality
What are the important
nodes in the network?

What are central nodes in
the network?
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Centrality
Undirected Graphs

e Eigenvalue Centrality

Directed Graphs

o Katz Centrality
e Pagerank
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Centrality
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Betweenness

What are the important
edges in the network?

What are edges that may
connect clusters of nodes In
the network?
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Betweenness

Girvan-Newman Algorithm -
hierarchical method to
partition nodes into
communities using edge
betweenness
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Girvan-Newman Algorithm
Two phases:

Phase One: Compute betweenness for every edge
Phase Two: Discover communities by removing high betweenness
edges (similar to hierarchical clustering)
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Girvan-Newman Algorithm
Calculating Betweenness

Formally, betweenness(e): fraction of node pairs (x, y) where shortest
path crosses edge e

Path Counting: For each vertex x, use breadth-first-search to count
number of shortest paths through each edge e in graph between o and
every other vertex y.

Sum result across vertices for each edge e, and divide by two

Sum result across nodes, and divide by two
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Girvan-Newman Algorithm
Counting Paths

Algorithm (starting from node )

1. Construct breadth-first search tree

2. (Root->Leaf) Label each vertex v with the number of shortest paths
between x and v: sum of labels of parents

3. (Leaf->Root) Count the (weighted) number of shortest paths that go
through each edge: next slide
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Girvan-Newman Algorithm

Counting Paths

Step 3, counting number of shortest paths through each edge
a. Leafs v in search tree get a creditof C, = 1

b. Incoming edge e; = (y;, v) to vertex v in search tree gets credit

C. =C, %=
€i v ijj

e p;: number of shortest paths between x and y; (computed in Step 2)
e SUM Zj IS over parents of v
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Girvan-Newman Algorithm
Counting Paths

c. Non-leaf vertex v gets credit C, = 1 + Zj e; where sum 7 is over

outgoing edges €; in search tree
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Girvan-Newman Algorithm

Example

A (B)
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Resources
Cross-language

igraph: http://igraph.org/
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http://igraph.org/

Resources

R

Workhorses:

e 1graph
e Rgraphviz

Tidyverse (https://tidyverse.org):

e tidygraph
e goraph
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https://cran.r-project.org/web/packages/igraph/index.html
https://www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html
https://tidyverse.org/
https://cran.r-project.org/web/packages/tidygraph/index.html
https://cran.r-project.org/web/packages/ggraph/index.html

Resources
Python

e 1graph
e networkx
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http://igraph.org/python/doc/tutorial/tutorial.html
https://networkx.github.io/

