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Soft K-means Clustering

Instead of the combinatorial approach of the K -means algorithm, take a
more direct probabilistic approach to modeling distribution P(X).

Assume each of the K clusters corresponds to a multivariate distribution
P(X),

P(X) is then a mixture of these distributions as
P(X) = Y p, mPu(X).
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Soft K-means Clustering

Specifically, take Py(X) as a multivariate normal distribution

fe(X) = (/‘kaakl)

and mixture density f(X) = 22{:1 7k [ (X).
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Soft K-means Clustering

Use Maximum Likelihood to estimate parameters

_ 2 2
0= (H1y- oy WK1 OLr ey O3y Ty v oy TEK)

based on their log-likelihood

N K
£00; X) =) log| > mifu(wi; 6)
1=1 k=1 _
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Soft K-means Clustering

N [K
00; X) =) log| Y  mful(zs;0)
im1 L= |

Maximizing this likelihood directly is computationally difficult

Use Expectation Maximization algorithm (EM) instead.
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Example: Mixture of Two Univariate Gaussians

density
0.00 005 010 0415 020 0.25 0.30
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Soft K-means Clustering
Consider unobserved latent variables A\;j taking values 0 or 1,

Az-j — 1 specifies observation x; was generated by component k of the
mixture distribution.
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Soft K-means Clustering

Now set Pr(A;x = 1) = mg,and assume we observed values for latent
variables A;z.

We can write the log-likelinood in this case as

N K
0(60; X, A) ZZAzklogfk x;; 0 +ZZAiklogﬂk

1=1 k=1 1=1 k=1
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Soft K-means Clustering

We have closed-form solutions for maximum likelihood estimates:

QL — Yy Agi

b Zz]il A

N .
~2 D im1 Aik(wi_ﬂk)z
O'k — N
Zizl A

’ﬁ' L Zfi1 Aik

k — N -
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Constrained optimization

We have a problem of type

min,, fo(x)
s.t.  fi(z) <0i=1,...,m
hile)=0¢t=1,...,p

Note: This discussion follows Boyd and Vandenberghe, Convex
Optimization
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Constrained optimization

To solve these type of problems we will look at the Lagrangian function:

p
L(z, A\, v) +Z)\ fi(z +ZVz'gz'($)
i—1
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Constrained optimization

There is a beautiful result giving optimality conditions based on the
Lagrangian:

Suppose T, ) and 7 are optimal, then
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Constrained optimization

We can use the gradient and feasibility conditions to prove the MLE
result.
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Soft K-means Clustering

Of course, this result depends on observing values for A;; which we
don't observe. Use an iterative approach as well:

e given current estimate of parameters 6,
e Substitute E|A;x| X, 0] for Az
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Soft K-means Clustering

Of course, this result depends on observing values for A;; which we
don't observe. Use an iterative approach as well:

e given current estimate of parameters 6,
e Substitute E|A;x| X, 0] for Az

We will prove that this maximizes the likelihood we need £(6; X).
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Soft K-means Clustering

Soft K-means Clustering
In the mixture case, what does this look like?

Define

vir(0) = E(Au| X, 0) = Pr(A; = 11X, 0)
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Soft K-means Clustering

Soft K-means Clustering

Use Bayes' Rule to write this in terms of the multivariate normal densities
with respect to current estimates 6

’Y’Lkﬁ T PT(XZ)
@i e o)y
o K
Zz:1 fl(ifiz';ul,(flz)ﬂz
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Soft K-means Clustering

Soft K-means Clustering

Quantity v;x(8) is referred to as the responsibility of cluster k for
observation ¢, according to current parameter estimate 6.
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Soft K-means Clustering

Soft K-means Clustering

We can now give a complete specification of the EM algorithm for
mixture model clustering.

1. Take initial guesses for parameters 6

2. Expectation Step: Compute responsibilities 7;z(0)

3. Maximization Step. Estimate new parameters based on
responsibilities as below.

4. Iterate steps 2 and 3 until convergence
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Soft K-means Clustering

Soft K-means Algorithm

Estimates in the Maximization step are given by

N
fi, = D iz Vik(0)

L =
ij\;l "Yik
N 2
A2 Zizl Yie(0) (T — pr)
O'k — N
Zi:l ’Yz’k(‘g)

and
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Soft K-means Clustering

Soft K-means Algorithm

The name "soft" K-means refers to the fact that parameter estimates for
each cluster are obtained by weighted averages across all observations.

20 /45



The EM Algorithm in General

So, why does that work?
Why does plugging in ;x(6) for the latent variables A;j work?

Why does that maximize log-likelihood £(6; X)?
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The EM Algorithm in General

Think of it as follows:

/Z: observed data

Z™: missing latentdata T' = (Z, Z™): complete data (observed and
missing)
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The EM Algorithm in General

Think of it as follows:

Z: observed data
Z™: missing latentdata T' = (Z, Z™): complete data (observed and
missing)

0(0'; Z): log-likehood w.r.t. observed data
£o(0'; T): log-likelihood w.r.t. complete data
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The EM Algorithm in General

Next, notice that

Pr(T|6)
Pr(Z|9) = Pr(Zm|Z,0)
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The EM Algorithm in General

Next, notice that

Pr(T|6)
Pr(Z|9) = Pr(Zm|Z,0)

As likelihood:

0052) = £y(0';T) — £1(60'; 2™ | Z)
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The EM Algorithm in General

lterative approach: given parameters 6 take expectation of log-
likelihoods

U3 Z) = El(05T)Z,0) - El6L(8;2™2)|Z, 6
Q(¢',0) — R(¢',0)
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The EM Algorithm in General

lterative approach: given parameters 6 take expectation of log-
likelihoods

U3 Z) = El(05T)Z,0) - El6L(8;2™2)|Z, 6
= Q(¢,6) — R(¢,6)

In soft k-means, Q(#', 8) is the log likelihood of complete data with Ay
replaced by ;% (6)
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The EM Algorithm in General

The general EM algorithm

1. Initialize parameters %)

2. Construct function Q(6', V)

3. Find next set of parameters U1 = arg maxy Q¢ 9(7))
4. Iterate steps 2 and 3 until convergence

28 [ 45



The EM Algorithm in General
So, why does that work?

g(g(jﬂ); Z) — g(g(j); Z) = [Q(g(jﬂ), 9(3‘)) _ Q(g(j), g(j))]
. . . \
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The EM Algorithm in General

So, why does that work?

20UV Z) — 9(6Y); Z) = Q(6U+Y 91y — Q8D o)

> 0

|.LE., every step makes log-likehood larger
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The EM Algorithm in General

Why else does it work? Q(6', 8) minorizes £(0'; Z)
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The EM Algorithm in General

General algorithmic concept:
lterative approach:

e Initialize parameters
e Construct bound based on current parameters
e Optimize bound
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Imputing missing dato

Z: observed data
Z™: missing observations

Requires a likelihood model...
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Latent semantic analysis

Documents as mixtures of topics (Hoffman 1998)

Topics

gene 0.04
dna 0.02
genetic 0.01

___—

Topic proportions and

Documents assignments

life 0.02

evolve 0.01
organism 0.01

f

brain 0.04
neuron 0.02
nerve 0.01

\____//_‘

data 0.02
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Latent semantic analysis
We have a set of documents D
Each document modeled as a bag-of-words (bow) over dictionary W'

T 4: the number of times word w € W appears in document de D.
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Latent semantic analysis

Let's start with a simple model based on the frequency of word
occurrences.

Each document is modeled as ng4 draws from a Multinomial distribution
with parameters 83 = {01 4,...,0w 4}

Note 6,y q > 0and > 0,4 = 1.
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Latent semantic analysis

Probability of observed corpus D

D W
Pr(DI{64}) o< [T I] 6%

d=1 w=1
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Latent semantic analysis

Problem 1:

Prove MLE 6, g = =2

nq
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Probablistic Latent Semantic Analysis

Let's change our document model to introduce topics.

The key idea is that the probability of observing a word in a document is
given by two pieces:

e The probability of observing a fopic in a document, and
e The probability of observing a word given a topic

Pr(w,d) = »  Pr(w|t)Pr(t|d)

t=1
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Probablistic Latent Semantic Analysis

So, we rewrite corpus probability as

(D|{Pd}{9t OCHH (Zptd wt) |

d=1 w=1
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Probablistic Latent Semantic Analysis

So, we rewrite corpus probability as

(D|{Pd}{9t OCHH (Zptd wt) |

d=1 w=1

Mixture of topics!!
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Probablistic Latent Semantic Analysis

A fully observed model

Assume you know the /atent number of occurences of word w In
document d generated from topic ¢:

Aydt suchthat Y, Ay gt = Ty g

In that case we can rewrite corpus probability:

D W T

Pr(D|{pa},{0:}) OCHHHPthwt bt

=1 w=1 t=
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Probablistic Latent Semantic Analysis

Problem 2 Show MLESs given by

W
2’?‘ _ Z’w:l Awadat
t,d = T W
D
0 Zd:1 Ay
Hw,t —

W D
szl Zd:]. Aw7d7t
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Probablistic Latent Semantic Analysis
Since we don't observe Aw,d,t we use the EM algorithm

At each iteration (given current parameters {p,} and {60;} find
responsibility

Yw,dt — E[Aw,d,t‘{pd}a {gt}]

and maximize fully observed likelihood plugging in 7y, 4.+ for Aw,d,t
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Probablistic Latent Semantic Analysis
Problem 4: Show

pt,dew,t
T
> 1 Pr,dbuwyt

Yw,dt = Lw,d X
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