
Soft K-means Clustering
Instead of the combinatorial approach of the -means algorithm, take a
more direct probabilistic approach to modeling distribution .

Assume each of the  clusters corresponds to a multivariate distribution
,

 is then a mixture of these distributions as 
.

K

P(X)

K

Pk(X)

P(X)

P(X) = ∑
K
k=1 πkPk(X)
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Soft K-means Clustering
Specifically, take  as a multivariate normal distribution 

and mixture density .

Pk(X)

fk(X) = N(μk,σ2
k
I)

f(X) = ∑
K
k=1 πkfk(X)
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Soft K-means Clustering
Use Maximum Likelihood to estimate parameters

based on their log-likelihood

θ = (μ1, … ,μK,σ2
1 , … ,σ2

K
,π1, … ,πK)

ℓ(θ;X) =
N

∑
i=1

log[
K

∑
k=1

πkfk(xi; θ)]
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Soft K-means Clustering

Maximizing this likelihood directly is computationally difficult

Use Expectation Maximization algorithm (EM) instead.

ℓ(θ;X) =
N

∑
i=1

log[
K

∑
k=1

πkfk(xi; θ)]
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Example: Mixture of Two Univariate Gaussians
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Soft K-means Clustering
Consider unobserved latent variables  taking values 0 or 1,

 specifies observation  was generated by component  of the
mixture distribution.

Δik

Δij = 1 xi k
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Soft K-means Clustering
Now set ,and assume we observed values for latent
variables .

We can write the log-likelihood in this case as

Pr(Δik = 1) = πk
Δik

ℓ0(θ;X, Δ) =
N

∑
i=1

K

∑
k=1

Δik log fk(xi; θ) +
N

∑
i=1

K

∑
k=1

Δik logπk
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Soft K-means Clustering
We have closed-form solutions for maximum likelihood estimates:

.

μ̂k =
∑

N
i=1 Δikxi

∑
N

i=1 Δik

σ̂2
k =

∑
N

i=1 Δik(xi−μ̂k)2

∑
N

i=1 Δik

π̂k =
∑

K

i=1 Δik

N
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Constrained optimization
We have a problem of type

Note: This discussion follows Boyd and Vandenberghe, Convex
Optimization

minx f0(x)

s.t. fi(x) ≤ 0 i = 1, … ,m

hi(x) = 0 i = 1, … , p
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Constrained optimization
To solve these type of problems we will look at the Lagrangian function:

L(x,λ, ν) = f0(x) +
m

∑
i=1

λifi(x) +

p

∑
i=1

νigi(x)
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Constrained optimization
There is a beautiful result giving optimality conditions based on the
Lagrangian:

Suppose ,  and  are optimal, then~x
~
λ ~ν

fi(
~x) ≤ 0

hi(
~x) = 0

~
λi ≥ 0

~
λifi(

~x) = 0

∇L(~x,
~
λ, ~ν) = 0
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Constrained optimization
We can use the gradient and feasibility conditions to prove the MLE
result.
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Soft K-means Clustering
Of course, this result depends on observing values for  which we
don't observe. Use an iterative approach as well:

given current estimate of parameters ,
Substitute  for .

Δik

θ

E[Δik|Xi, θ] Δik
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Soft K-means Clustering
Of course, this result depends on observing values for  which we
don't observe. Use an iterative approach as well:

given current estimate of parameters ,
Substitute  for .

We will prove that this maximizes the likelihood we need .

Δik

θ

E[Δik|Xi, θ] Δik

ℓ(θ;X)
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Soft K-means Clustering

Soft K-means Clustering
In the mixture case, what does this look like?

Define

γik(θ) = E(Δik|Xi, θ) = Pr(Δik = 1|Xi, θ)
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Soft K-means Clustering

Soft K-means Clustering
Use Bayes' Rule to write this in terms of the multivariate normal densities
with respect to current estimates :θ

γik =

=

Pr(Xi|Δik = 1)Pr(Δik = 1)

Pr(Xi)

fk(xi;μk,σ2
k
)πk

∑
K

l=1 fl(xi;μl,σ
2
l
)πl
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Soft K-means Clustering

Soft K-means Clustering
Quantity  is referred to as the responsibility of cluster  for
observation , according to current parameter estimate .

γik(θ) k

i θ
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Soft K-means Clustering

Soft K-means Clustering
We can now give a complete specification of the EM algorithm for
mixture model clustering.

1. Take initial guesses for parameters 
2. Expectation Step: Compute responsibilities 
3. Maximization Step: Estimate new parameters based on

responsibilities as below.
4. Iterate steps 2 and 3 until convergence

θ

γik(θ)
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Soft K-means Clustering

Soft K-means Algorithm
Estimates in the Maximization step are given by

and

μ̂k =
∑

N

i=1 γik(θ)xi

∑
N
i=1 γik

σ̂2
k =

∑
N

i=1 γik(θ)(xi − μk)2

∑
N
i=1 γik(θ)

∑
N

(θ)
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Soft K-means Clustering

Soft K-means Algorithm
The name "soft" K-means refers to the fact that parameter estimates for
each cluster are obtained by weighted averages across all observations.
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The EM Algorithm in General
So, why does that work?

Why does plugging in  for the latent variables  work?

Why does that maximize log-likelihood ?

γik(θ) Δik

ℓ(θ;X)
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The EM Algorithm in General
Think of it as follows:

: observed data
: missing latent data : complete data (observed and

missing)

Z

Zm T = (Z,Zm)
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The EM Algorithm in General
Think of it as follows:

: observed data
: missing latent data : complete data (observed and

missing)

: log-likehood w.r.t. observed data
: log-likelihood w.r.t. complete data

Z

Zm T = (Z,Zm)

ℓ(θ′;Z)

ℓ0(θ′;T )
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The EM Algorithm in General
Next, notice that

Pr(Z|θ′) =
Pr(T |θ′)

Pr(Zm|Z, θ′)
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The EM Algorithm in General
Next, notice that

As likelihood:

Pr(Z|θ′) =
Pr(T |θ′)

Pr(Zm|Z, θ′)

ℓ(θ′;Z) = ℓ0(θ′;T ) − ℓ1(θ′;Zm|Z)
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The EM Algorithm in General
Iterative approach: given parameters  take expectation of log-
likelihoods

θ

ℓ(θ′;Z) = E[ℓ0(θ′;T )|Z, θ] − E[ℓ1(θ′;Zm|Z)|Z, θ]

≡ Q(θ′, θ) − R(θ′, θ)
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The EM Algorithm in General
Iterative approach: given parameters  take expectation of log-
likelihoods

In soft k-means,  is the log likelihood of complete data with 
replaced by 

θ

ℓ(θ′;Z) = E[ℓ0(θ′;T )|Z, θ] − E[ℓ1(θ′;Zm|Z)|Z, θ]

≡ Q(θ′, θ) − R(θ′, θ)

Q(θ′, θ) Δik

γik(θ)
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The EM Algorithm in General
The general EM algorithm

1. Initialize parameters 
2. Construct function 
3. Find next set of parameters 
4. Iterate steps 2 and 3 until convergence

θ(0)

Q(θ′, θ(j))

θ(j+1) = arg maxθ′ Q(θ′, θ(j))
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The EM Algorithm in General
So, why does that work?

ℓ(θ(j+1);Z) − ℓ(θ(j);Z) = [Q(θ(j+1), θ(j)) − Q(θ(j), θ(j))]

−[R(θ(j+1), θ(j)) − R(θ(j), θ(j))]

≥ 0
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The EM Algorithm in General
So, why does that work?

I.E., every step makes log-likehood larger

ℓ(θ(j+1);Z) − ℓ(θ(j);Z) = [Q(θ(j+1), θ(j)) − Q(θ(j), θ(j))]

−[R(θ(j+1), θ(j)) − R(θ(j), θ(j))]

≥ 0
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The EM Algorithm in General
Why else does it work?  minorizes Q(θ′, θ) ℓ(θ′;Z)
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The EM Algorithm in General
General algorithmic concept:

Iterative approach:

Initialize parameters
Construct bound based on current parameters
Optimize bound
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Imputing missing data
: observed data

: missing observations

Requires a likelihood model...

Z

Zm

33 / 45

Latent semantic analysis
Documents as mixtures of topics (Hoffman 1998)
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Latent semantic analysis
We have a set of documents 

Each document modeled as a bag-of-words (bow) over dictionary .

: the number of times word  appears in document .

D

W

xw,d w ∈ W d ∈ D
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Latent semantic analysis
Let's start with a simple model based on the frequency of word
occurrences.

Each document is modeled as  draws from a Multinomial distribution
with parameters 

Note  and .

nd

θd = {θ1,d, … , θW ,d}

θw,d ≥ 0 ∑w θw,d = 1

36 / 45

Latent semantic analysis
Probability of observed corpus D

Pr(D|{θd}) ∝
D

∏
d=1

W

∏
w=1

θ
xw,d

w,d
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Latent semantic analysis

Problem 1:

Prove MLE θ̂w,d =
xw,d

nd
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Probablistic Latent Semantic Analysis
Let's change our document model to introduce topics.

The key idea is that the probability of observing a word in a document is
given by two pieces:

The probability of observing a topic in a document, and
The probability of observing a word given a topic

Pr(w, d) =
T

∑
t=1

Pr(w|t)Pr(t|d)
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Probablistic Latent Semantic Analysis
So, we rewrite corpus probability as

Pr(D|{pd}{θt}) ∝
D

∏
d=1

W

∏
w=1

(
T

∑
t=1

pt,dθw,t)

xw,d
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Probablistic Latent Semantic Analysis
So, we rewrite corpus probability as

Mixture of topics!!

Pr(D|{pd}{θt}) ∝
D

∏
d=1

W

∏
w=1

(
T

∑
t=1

pt,dθw,t)

xw,d
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Probablistic Latent Semantic Analysis

A fully observed model

Assume you know the latent number of occurences of word  in
document  generated from topic :

, such that .

In that case we can rewrite corpus probability:

w

d t

Δw,d,t ∑t Δw,d,t = xw,d

Pr(D|{pd}, {θt}) ∝
D

∏
d=1

W

∏
w=1

T

∏
t=1

(pt,dθw,t)
Δw,d,t
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Probablistic Latent Semantic Analysis
Problem 2 Show MLEs given by

p̂ t,d =
∑

W
w=1 Δw,d,t

∑
T

t=1 ∑
W

w=1 Δw,d,t

θ̂w,t =
∑

D
d=1 Δw,d,t

∑
W

w=1 ∑
D

d=1 Δw,d,t
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Probablistic Latent Semantic Analysis
Since we don't observe  we use the EM algorithm

At each iteration (given current parameters  and  find
responsibility

and maximize fully observed likelihood plugging in  for 

Δw,d,t

{pd} {θd}

γw,d,t = E[Δw,d,t|{pd}, {θt}]

γw,d,t Δw,d,t
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Probablistic Latent Semantic Analysis
Problem 4: Show

γw,d,t = xw,d ×
pt,dθw,t

∑
T
t′=1 pt′,dθw,t′
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Soft K-means Clustering
Instead of the combinatorial approach of the -means algorithm, take a
more direct probabilistic approach to modeling distribution .

Assume each of the  clusters corresponds to a multivariate distribution
,

 is then a mixture of these distributions as 
.

K

P(X)

K

Pk(X)

P(X)

P(X) =∑
K

k=1 πkPk(X)
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Soft K-means Clustering
Specifically, take  as a multivariate normal distribution 

and mixture density .

Pk(X)

fk(X) = N(μk,σ2
k
I)

f(X) = ∑
K
k=1 πkfk(X)
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Soft K-means Clustering
Use Maximum Likelihood to estimate parameters

based on their log-likelihood

θ = (μ1, … , μK, σ2
1 , … , σ2

K
, π1, … , πK)

ℓ(θ; X) =
N

∑
i=1

log[
K

∑
k=1

πkfk(xi; θ)]
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Soft K-means Clustering

Maximizing this likelihood directly is computationally difficult

Use Expectation Maximization algorithm (EM) instead.

ℓ(θ; X) =
N

∑
i=1

log[
K

∑
k=1

πkfk(xi; θ)]
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Example: Mixture of Two Univariate Gaussians
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Soft K-means Clustering
Consider unobserved latent variables  taking values 0 or 1,

 specifies observation  was generated by component  of the
mixture distribution.

Δik

Δij = 1 xi k
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Soft K-means Clustering
Now set ,and assume we observed values for latent
variables .

We can write the log-likelihood in this case as

Pr(Δik = 1) = πk

Δik

ℓ0(θ; X, Δ) =
N

∑
i=1

K

∑
k=1

Δik log fk(xi; θ) +
N

∑
i=1

K

∑
k=1

Δik log πk
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Soft K-means Clustering
We have closed-form solutions for maximum likelihood estimates:

.

μ̂k =
∑

N
i=1 Δikxi

∑
N

i=1 Δik

σ̂2
k =

∑
N

i=1 Δik(xi−μ̂k)2

∑
N

i=1 Δik

π̂k =
∑

K

i=1 Δik

N
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Constrained optimization
We have a problem of type

Note: This discussion follows Boyd and Vandenberghe, Convex
Optimization

minx f0(x)

s.t. fi(x) ≤ 0 i = 1, … , m

hi(x) = 0 i = 1, … , p
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Constrained optimization
To solve these type of problems we will look at the Lagrangian function:

L(x,λ, ν) = f0(x) +
m

∑
i=1

λifi(x) +

p

∑
i=1

νigi(x)
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Constrained optimization
There is a beautiful result giving optimality conditions based on the
Lagrangian:

Suppose ,  and  are optimal, then~x
~
λ ~ν

fi(
~x) ≤ 0

hi(
~x) = 0

~
λi ≥ 0

~
λifi(

~x) = 0

∇L(~x,
~
λ, ~ν) = 0
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Constrained optimization
We can use the gradient and feasibility conditions to prove the MLE
result.
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Soft K-means Clustering
Of course, this result depends on observing values for  which we
don't observe. Use an iterative approach as well:

given current estimate of parameters ,
Substitute  for .

Δik

θ

E[Δik|Xi, θ] Δik
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Soft K-means Clustering
Of course, this result depends on observing values for  which we
don't observe. Use an iterative approach as well:

given current estimate of parameters ,
Substitute  for .

We will prove that this maximizes the likelihood we need .

Δik

θ

E[Δik|Xi, θ] Δik

ℓ(θ; X)

14 / 45



Soft K-means Clustering

Soft K-means Clustering
In the mixture case, what does this look like?

Define

γik(θ) = E(Δik|Xi, θ) = Pr(Δik = 1|Xi, θ)
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Soft K-means Clustering

Soft K-means Clustering
Use Bayes' Rule to write this in terms of the multivariate normal densities
with respect to current estimates :θ

γik =

=

Pr(Xi|Δik = 1)Pr(Δik = 1)

Pr(Xi)

fk(xi; μk, σ2
k
)πk

∑
K

l=1 fl(xi; μl, σ2
l
)πl
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Soft K-means Clustering

Soft K-means Clustering
Quantity  is referred to as the responsibility of cluster  for
observation , according to current parameter estimate .

γik(θ) k

i θ
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Soft K-means Clustering

Soft K-means Clustering
We can now give a complete specification of the EM algorithm for
mixture model clustering.

1. Take initial guesses for parameters 
2. Expectation Step: Compute responsibilities 
3. Maximization Step: Estimate new parameters based on

responsibilities as below.
4. Iterate steps 2 and 3 until convergence

θ

γik(θ)
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Soft K-means Clustering

Soft K-means Algorithm
Estimates in the Maximization step are given by

and

μ̂k =
∑

N

i=1 γik(θ)xi

∑
N
i=1 γik

σ̂2
k =

∑
N

i=1 γik(θ)(xi − μk)2

∑
N
i=1 γik(θ)

∑
N

(θ)
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Soft K-means Clustering

Soft K-means Algorithm
The name "soft" K-means refers to the fact that parameter estimates for
each cluster are obtained by weighted averages across all observations.
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The EM Algorithm in General
So, why does that work?

Why does plugging in  for the latent variables  work?

Why does that maximize log-likelihood ?

γik(θ) Δik

ℓ(θ; X)
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The EM Algorithm in General
Think of it as follows:

: observed data
: missing latent data : complete data (observed and

missing)

Z

Z
m

T = (Z, Z
m)
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The EM Algorithm in General
Think of it as follows:

: observed data
: missing latent data : complete data (observed and

missing)

: log-likehood w.r.t. observed data
: log-likelihood w.r.t. complete data

Z

Z
m

T = (Z, Z
m)

ℓ(θ
′; Z)

ℓ0(θ
′; T )
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The EM Algorithm in General
Next, notice that

Pr(Z|θ′) =
Pr(T |θ′)

Pr(Zm|Z, θ′)
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The EM Algorithm in General
Next, notice that

As likelihood:

Pr(Z|θ′) =
Pr(T |θ′)

Pr(Zm|Z, θ′)

ℓ(θ
′; Z) = ℓ0(θ

′; T ) − ℓ1(θ
′; Z

m|Z)
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The EM Algorithm in General
Iterative approach: given parameters  take expectation of log-
likelihoods

θ

ℓ(θ′; Z) = E[ℓ0(θ′; T )|Z, θ] − E[ℓ1(θ′; Zm|Z)|Z, θ]

≡ Q(θ′, θ) − R(θ′, θ)
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The EM Algorithm in General
Iterative approach: given parameters  take expectation of log-
likelihoods

In soft k-means,  is the log likelihood of complete data with 
replaced by 

θ

ℓ(θ′; Z) = E[ℓ0(θ′; T )|Z, θ] − E[ℓ1(θ′; Zm|Z)|Z, θ]

≡ Q(θ′, θ) − R(θ′, θ)

Q(θ′, θ) Δik

γik(θ)
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The EM Algorithm in General
The general EM algorithm

1. Initialize parameters 
2. Construct function 
3. Find next set of parameters 
4. Iterate steps 2 and 3 until convergence

θ(0)

Q(θ′, θ(j))

θ(j+1) = arg maxθ′ Q(θ′, θ(j))
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The EM Algorithm in General
So, why does that work?

ℓ(θ(j+1); Z) − ℓ(θ(j); Z) = [Q(θ(j+1), θ(j)) − Q(θ(j), θ(j))]

−[R(θ(j+1), θ(j)) − R(θ(j), θ(j))]

≥ 0

29 / 45



The EM Algorithm in General
So, why does that work?

I.E., every step makes log-likehood larger

ℓ(θ(j+1); Z) − ℓ(θ(j); Z) = [Q(θ(j+1), θ(j)) − Q(θ(j), θ(j))]

−[R(θ(j+1), θ(j)) − R(θ(j), θ(j))]

≥ 0
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The EM Algorithm in General
Why else does it work?  minorizes Q(θ′, θ) ℓ(θ′; Z)

31 / 45



The EM Algorithm in General
General algorithmic concept:

Iterative approach:

Initialize parameters
Construct bound based on current parameters
Optimize bound
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Imputing missing data
: observed data

: missing observations

Requires a likelihood model...

Z

Z
m
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Latent semantic analysis
Documents as mixtures of topics (Hoffman 1998)
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Latent semantic analysis
We have a set of documents 

Each document modeled as a bag-of-words (bow) over dictionary .

: the number of times word  appears in document .

D

W

xw,d w ∈ W d ∈ D
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Latent semantic analysis
Let's start with a simple model based on the frequency of word
occurrences.

Each document is modeled as  draws from a Multinomial distribution
with parameters 

Note  and .

nd

θd = {θ1,d, … , θW ,d}

θw,d ≥ 0 ∑
w
θw,d = 1
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Latent semantic analysis
Probability of observed corpus D

Pr(D|{θd}) ∝
D

∏
d=1

W

∏
w=1

θ
xw,d

w,d
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Latent semantic analysis

Problem 1:

Prove MLE θ̂w,d =
xw,d

nd
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Probablistic Latent Semantic Analysis
Let's change our document model to introduce topics.

The key idea is that the probability of observing a word in a document is
given by two pieces:

The probability of observing a topic in a document, and
The probability of observing a word given a topic

Pr(w, d) =
T

∑
t=1

Pr(w|t)Pr(t|d)
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Probablistic Latent Semantic Analysis
So, we rewrite corpus probability as

Pr(D|{pd}{θt}) ∝
D

∏
d=1

W

∏
w=1

(
T

∑
t=1

pt,dθw,t)

xw,d
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Probablistic Latent Semantic Analysis
So, we rewrite corpus probability as

Mixture of topics!!

Pr(D|{pd}{θt}) ∝
D

∏
d=1

W

∏
w=1

(
T

∑
t=1

pt,dθw,t)

xw,d
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Probablistic Latent Semantic Analysis

A fully observed model

Assume you know the latent number of occurences of word  in
document  generated from topic :

, such that .

In that case we can rewrite corpus probability:

w

d t

Δw,d,t ∑t Δw,d,t = xw,d

Pr(D|{pd}, {θt}) ∝
D

∏
d=1

W

∏
w=1

T

∏
t=1

(pt,dθw,t)
Δw,d,t
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Probablistic Latent Semantic Analysis
Problem 2 Show MLEs given by

p̂ t,d =
∑

W

w=1 Δw,d,t

∑
T

t=1 ∑
W

w=1 Δw,d,t

θ̂w,t =
∑

D

d=1 Δw,d,t

∑
W

w=1
∑

D

d=1
Δw,d,t
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Probablistic Latent Semantic Analysis
Since we don't observe  we use the EM algorithm

At each iteration (given current parameters  and  find
responsibility

and maximize fully observed likelihood plugging in  for 

Δw,d,t

{pd} {θd}

γw,d,t = E[Δw,d,t|{pd}, {θt}]

γw,d,t Δw,d,t
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Probablistic Latent Semantic Analysis
Problem 4: Show

γw,d,t = xw,d ×
pt,dθw,t

∑
T
t′=1

pt′,dθw,t′
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