
Motivating Example
Time series dataset of mortgage affordability as calculated and
distributed by Zillow: https://www.zillow.com/research/data/.

The dataset consists of monthly mortgage affordability values for 76
counties with data from 1979 to 2017.

1 / 57

Motivating Example
"To calculate mortgage affordability, we first calculate the
mortgage payment for the median-valued home in a
metropolitan area by using the metro-level Zillow Home Value
Index for a given quarter and the 30-year fixed mortgage
interest rate during that time period, provided by the Freddie
Mac Primary Mortgage Market Survey (based on a 20 percent
down payment)."

2 / 57

Motivating Example
"Then, we consider what portion of the monthly median
household income (U.S. Census) goes toward this monthly
mortgage payment. Median household income is available with
a lag. "

3 / 57

Can we partition counties
into groups of counties with
similar value trends across
time?

Motivating Example

4 / 57

Cluster Analysis
The high-level goal of cluster analysis is to organize objects
(observations) that are similar to each other into groups.

We want objects within a group to be more similar to each other than
objects in different groups.

5 / 57

Cluster Analysis
The high-level goal of cluster analysis is to organize objects
(observations) that are similar to each other into groups.

We want objects within a group to be more similar to each other than
objects in different groups.

Central to this high-level goal is how to measure the degree of similarity
between objects.

A clustering method then uses the similarity measure provided to it to
group objects into clusters.

6 / 57

Cluster Analysis
Result of the k-means algorithm
partitioning the data into 9 clusters.

The darker series within each
cluster shows the average time
series within the cluster.

7 / 57

Dissimilarity-based Clustering
For certain algorithms, instead of similarity we work with dissimilarity,
often represented as distances.

When we have observations defined over attributes, or predictors, we
define dissimilarity based on these attributes.

8 / 57

Dissimilarity-based Clustering
Given measurements for observations over

 predictors.

Suppose we define a dissimilarity , we can then define a
dissimilarity between objects as

xij i = 1, … ,N
j = 1, … , p

dj(xij,xi′j)

d(xi,xi′) =
p

∑
j=1

dj(xij,xi′j)

9 / 57

Dissimilarity-based Clustering
In the k-means algorithm, and many other algorithms, the most common
usage is squared distance

We can use different dissimilarities, for example

which may affect our choice of clustering algorithm later on.

dj(xij,xi′j) = (xij − xi′j)
2

dj(xij,xi′j) = |xij − xi′j|

10 / 57

Dissimilarity-based Clustering
For categorical variables, we could set

dj(xij,xi′j) =
⎧
⎨⎩

0 if xij = xi′j

1 o.w.

11 / 57

Dissimilarity-based Clustering
If the values the categorical variable have an intrinsic similarity

Generalize using symmetric matrix with elements

,
 and
 otherwise.

This may of course lead to a dissimilarity that is not a proper distance.

L

Lrr′ = Lr′r

Lrr = 0
Lrr′ ≥ 0

12 / 57

Limitations of Distance-based clustering
When working with distances, we are quickly confronted with the curse
of dimensionality.

One flavor: in high dimensions: all points are equi-distant

13 / 57

The curse of dimensionality
Consider the case where we have many covariates. We want to use a
distance-based clustering method.

14 / 57

The curse of dimensionality
Consider the case where we have many covariates. We want to use a
distance-based clustering method.

Basically, we need to define distance and look for small multi-
dimensional "balls" around the data points. With many covariates this
becomes difficult.

15 / 57

The curse of dimensionality
Imagine we have equally spaced data and that each covariate is in
. We want something that clusters points into local regions, containg
some reasonably small amount of data points (say 10%). Let's imagine
these are high-dimensional cubes.

[0, 1]

16 / 57

The curse of dimensionality
Imagine we have equally spaced data and that each covariate is in
. We want something that clusters points into local regions, containg
some reasonably small amount of data points (say 10%). Let's imagine
these are high-dimensional cubes.

If we have covariates and we are forming -dimensional cubes, then
each side of the cube must have size determined by

.

[0, 1]

p p

l

l × l × ⋯ × l = lp = .10

17 / 57

The curse of dimensionality

If the number of covariates is p=10, then . So it really
isn't local! If we reduce the percent of data we consider to 1%, .
Still not very local.

l = .11/10 = .8
l = 0.63

18 / 57

The curse of dimensionality

If the number of covariates is p=10, then . So it really
isn't local! If we reduce the percent of data we consider to 1%, .
Still not very local.

If we keep reducing the size of the neighborhoods we will end up with
very small number of data points in each cluster and require a large
number of clusters.

l = .11/10 = .8
l = 0.63

19 / 57

K-means Clustering
A commonly used algorithm to perform clustering is the K-means
algorithm.

It is appropriate when using squared Euclidean distance as the measure
of object dissimilarity.

d(xi,xi′) =
p

∑
j=1

(xij − xi′j)
2

= ∥xi − xi′∥
2

20 / 57

K-means Clustering
K-means partitions observations into clusters, with provided as a
parameter.

Given some clustering, or partition, , denote cluster assignment of
observation to cluster is denoted as .

K K

C

xi k ∈ {1, … ,K} C(i) = k

21 / 57

K-means Clustering
K-means partitions observations into clusters, with provided as a
parameter.

Given some clustering, or partition, , denote cluster assignment of
observation to cluster is denoted as .

K-means minimizes this clustering criterion:

K K

C

xi k ∈ {1, … ,K} C(i) = k

W(C) =
K

∑
k=1

∑
i: C(i)=k

∑
i′: C(i′)=k

∥xi − xi′∥
21

2

22 / 57

K-means Clustering
This is equivalent to minimizing

with:

 is the average of predictor over the observations assigned to
cluster ,

 is the number of observations assigned to cluster

W(C) =
K

∑
k=1

Nk ∑
i: C(i)=k

∥xi − x̄k∥21

2

x̄k = (x̄k1, … , x̄kp)
x̄kj j

k

Nk k

23 / 57

K-means Clustering

Minimize the total distance given by each observation to the mean
(centroid) of the cluster to which the observation is assigned.

W(C) =
K

∑
k=1

Nk ∑
i: C(i)=k

∥xi − x̄k∥21

2

24 / 57

K-means Clustering
An iterative algorithm is used to minimize this criterion

1. Initialize by choosing observations as centroids
2. Assign each observation to the cluster with the nearest centroid, i.e.,

set
3. Update centroids
4. Iterate steps 2 and 3 until convergence

K m1,m2, … ,mk

i

C(i) = arg min1≤k≤K ∥xi − mk∥2

mk = x̄k

25 / 57

Here we illustrate the
k-means algorithm
over four iterations on
our example data
with .

K-means Clustering

K = 4

26 / 57

K-means Clustering
Criterion is reduced in each iteration so the algorithm is assured
to converge.

Not a convex criterion, the clustering we obtain may not be globally
optimal.

In practice, the algorithm is run with multiple initializations (step 0) and
the best clustering achieved is used.

W(C)

27 / 57

K-means Clustering
Also, selection of observations as centroids can be improved using the
K-means++ algorithm:

1. Choose an observation as centroid uniformly at random
2. To choose centroid , compute for each observation not chosen

as a centroid the distance to the nearest centroid

3. Set centroid to an observation randomly chosen with probability

4. Iterate steps 1 and 2 until centroids are chosen

m1

mk i

di = min1≤l<k ∥xi − ml∥2

mk

edi

∑i′ e
d

i′

K

28 / 57

Choosing the number of clusters
The number of parameters must be determined before running the K-
means algorithm.

There is no clean direct method for choosing the number of clusters to
use in the K-means algorithm (e.g. no cross-validation method)

29 / 57

Looking at criterion
 alone is not

sufficient as the
criterion will become
smaller as the value
of is reduced.

Choosing the number of clusters

W(C)

K

30 / 57

Choosing the number of clusters
We can use properties of this plot for ad-hoc selection.

Suppose there is a true underlying number of clusters in the data,

improvement in the statistic will be fast for values of

slower for values of .

K∗

WK(C)
K ≤ K∗

K > K∗

31 / 57

Choosing the number of clusters
Improvement in the statistic will be fast for values of

In this case, there will be a cluster which will contain observations
belonging to two of the true underlying clusters, and therefore will have
poor within cluster similarity.

As is increased, observations may then be separated into separate
clusters, providing a sharp improvement in the statistic.

WK(C) K ≤ K∗

K

WK(C)

32 / 57

Choosing the number of clusters
Improvement in the statistic will be slower for values of

In this case, observations belonging to a single true cluster are split into
multiple cluster, all with generally high within-cluster similarity,

Splitting these clusters further will not improve the statistic very
sharply.

WK(C)
K > K∗

WK(C)

33 / 57

The curve will
therefore have an
inflection point
around .

Choosing the number of clusters

K∗

34 / 57

Choosing the number of clusters
The gap statistic is used to identify the inflection point in the curve.

It compares the behavior of the statistic based on the data with
the behavior of the statistic for data generated uniformly at
random over the range of the data.

Chooses the that maximizes the gap between these two
curves.

WK(C)
WK(C)

K WK(C)

35 / 57

For this dataset, the
gap statistic suggests
there is no clear
cluster structure and
therefore is
the best choice.

A choice of is
also appropriate.

Choosing the number of clusters

K = 1

K = 4

36 / 57

K-medioids clustering
A variant of the same algorithm for distance that are not Euclidean

Input: Distance matrix between observations
Output: Cluster assignments, and a representative data point for each
cluster (medioid)

Advantage: Can apply to situations where distances between
observations are available but not feature vectors (e.g., network data)

d(xi,xk)

37 / 57

K-medioids clustering
1. Initialize by choosing observations as medioids
2. Assign each observation to the cluster with the nearest medioid, i.e.,

set
3. Update medioids

4. Iterate steps 2 and 3 until convergence

K m1,m2, … ,mk

i

C(i) = arg min1≤k≤K d(xi,mk)
mk = arg minxi s.t. C(i)=k∑j s.t. C(j)=k d(xi,xj)

38 / 57

Large-scale clustering
Cost of K-means as presented:

Each iteration: Compute distance for each point to centroid O(knp)

39 / 57

Large-scale clustering
Cost of K-means as presented:

Each iteration: Compute distance for each point to centroid

This implies we have to do multiple passes over entire dataset.

Not good for massive datasets

O(knp)

40 / 57

Large-scale clustering
Cost of K-means as presented:

Each iteration: Compute distance for each point to centroid

This implies we have to do multiple passes over entire dataset.

Not good for massive datasets

Can we do this in "almost" a single pass?

O(knp)

41 / 57

Large-scale clustering (BFR Algorithm)
1. Select points as before
2. Process data file in chunks:

Set chunk size so each can be processed in main memory
Will use memory for workspace so not entire memory available

k

42 / 57

Large-scale clustering (BFR Algorithm)
For each chunk

All points sufficiently close to the centroid of one of the clusters is
assigned to that cluster (Discard Set)

k

43 / 57

Large-scale clustering (BFR Algorithm)
For each chunk

All points sufficiently close to the centroid of one of the clusters is
assigned to that cluster (Discard Set)

Remaining points are clustered (e.g., using -means with some value
of . Two cases

Clusters with more than one point (Compressed Set)
Singleton clusters (Retained Set)

k

k

k

44 / 57

Large-scale clustering (BFR Algorithm)
For each chunk

All points sufficiently close to the centroid of one of the clusters is
assigned to that cluster (Discard Set)

Remaining points are clustered (e.g., using -means with some value
of . Two cases

Clusters with more than one point (Compressed Set)
Singleton clusters (Retained Set)

Try to merge clusters in Compressed Set

k

k

k

45 / 57

Large-scale clustering (BFR Algorithm)
What is sufficiently close?

"Weighted" distance to centroid below some threshold.

: cluster mean for feature
: cluster standard deviation of feature


 
⎷

d

∑
i=1

(pi − ci)2

σi

ci i

σi i

46 / 57

Large-scale clustering (BFR Algorithm)

Assumption: points are distributed along axis-parallel ellipses

47 / 57

Large-scale clustering (BFR Algorithm)
Under this assumption, we only need to store means and variances to
calculate distances

48 / 57

Large-scale clustering (BFR Algorithm)
Under this assumption, we only need to store means and variances to
calculate distances

We can do this by storing for each cluster :

 number of points assigned to cluster
 sum of values of feature in cluster
 sum of squares of values of feature in cluster

j

Nj

sij i j

s2
ij i j

49 / 57

Large-scale clustering (BFR Algorithm)
Under this assumption, we only need to store means and variances to
calculate distances

We can do this by storing for each cluster :

 number of points assigned to cluster
 sum of values of feature in cluster
 sum of squares of values of feature in cluster

Constant amount of space to represent cluster

j

Nj

sij i j

s2
ij i j

50 / 57

Large-scale clustering (BFR Algorithm)
Under this assumption, we only need to store means and variances to
calculate distances

We can do this by storing for each cluster :

 number of points assigned to cluster
 sum of values of feature in cluster
 sum of squares of values of feature in cluster

Constant amount of space to represent cluster

Exercise. show these are sufficient to calculate weighted distance

j

Nj

sij i j

s2
ij i j

51 / 57

Large-scale clustering (BFR Algorithm)
This is used to represent (final) clusters in Discard Set and (partial)
clusters in Compressed Set

Only points explicitly in memory are those in the Retained Set

52 / 57

Large-scale clustering (BFR Algorithm)
This is used to represent (final) clusters in Discard Set and (partial)
clusters in Compressed Set

Only points explicitly in memory are those in the Retained Set

Points outside of Retained Set are never kept in memory (written out
along with cluster assignment)

53 / 57

Large-scale clustering (BFR Algorithm)

Merging clusters in Compressed Set

Example: Merge if the variance of combined clusters is sufficiently close
to variance of separate clusters

54 / 57

Large-scale clustering (BFR Algorithm)
After all data is processed:

Assign points in Retained Set to cluster with nearest centroid

Merge partial clusters in Compressed Set with final clusters in
Discarded Set

55 / 57

Large-scale clustering (BFR Algorithm)
After all data is processed:

Assign points in Retained Set to cluster with nearest centroid

Merge partial clusters in Compressed Set with final clusters in
Discarded Set

Or,

Flag all of these as outliers

56 / 57

Summary
Clustering algorithms used to partition data into groups of similar
observations
K-means and K-mediods: iterative algorithms to minimize a partition
objective function
Optimization solution depends on initialization: K-means++ improved
initialization
BFR Algorithm: how to solve for massive datasets in "almost" one
pass of algorithm

57 / 57

Data Clustering
Héctor Corrada Bravo

University of Maryland, College Park, USA
DATA606: 2020-04-12

https://www.zillow.com/research/data/

Motivating Example
Time series dataset of mortgage affordability as calculated and
distributed by Zillow: https://www.zillow.com/research/data/.

The dataset consists of monthly mortgage affordability values for 76
counties with data from 1979 to 2017.

1 / 57

https://www.zillow.com/research/data/

Motivating Example
"To calculate mortgage affordability, we first calculate the
mortgage payment for the median-valued home in a
metropolitan area by using the metro-level Zillow Home Value
Index for a given quarter and the 30-year fixed mortgage
interest rate during that time period, provided by the Freddie
Mac Primary Mortgage Market Survey (based on a 20 percent
down payment)."

2 / 57

Motivating Example
"Then, we consider what portion of the monthly median
household income (U.S. Census) goes toward this monthly
mortgage payment. Median household income is available with
a lag. "

3 / 57

Can we partition counties
into groups of counties with
similar value trends across
time?

Motivating Example

4 / 57

Cluster Analysis
The high-level goal of cluster analysis is to organize objects
(observations) that are similar to each other into groups.

We want objects within a group to be more similar to each other than
objects in different groups.

5 / 57

Cluster Analysis
The high-level goal of cluster analysis is to organize objects
(observations) that are similar to each other into groups.

We want objects within a group to be more similar to each other than
objects in different groups.

Central to this high-level goal is how to measure the degree of similarity
between objects.

A clustering method then uses the similarity measure provided to it to
group objects into clusters.

6 / 57

Cluster Analysis
Result of the k-means algorithm
partitioning the data into 9 clusters.

The darker series within each
cluster shows the average time
series within the cluster.

7 / 57

Dissimilarity-based Clustering
For certain algorithms, instead of similarity we work with dissimilarity,
often represented as distances.

When we have observations defined over attributes, or predictors, we
define dissimilarity based on these attributes.

8 / 57

Dissimilarity-based Clustering
Given measurements for observations over

 predictors.

Suppose we define a dissimilarity , we can then define a
dissimilarity between objects as

xij i = 1, … ,N

j = 1, … , p

dj(xij,xi′j)

d(xi,xi′) =

p

∑
j=1

dj(xij,xi′j)

9 / 57

Dissimilarity-based Clustering
In the k-means algorithm, and many other algorithms, the most common
usage is squared distance

We can use different dissimilarities, for example

which may affect our choice of clustering algorithm later on.

dj(xij,xi′j) = (xij − xi′j)
2

dj(xij,xi′j) = |xij − xi′j|

10 / 57

Dissimilarity-based Clustering
For categorical variables, we could set

dj(xij,xi′j) =
⎧
⎨⎩

0 if xij = xi′j

1 o.w.

11 / 57

Dissimilarity-based Clustering
If the values the categorical variable have an intrinsic similarity

Generalize using symmetric matrix with elements

,
 and
 otherwise.

This may of course lead to a dissimilarity that is not a proper distance.

L

Lrr′ = Lr′r

Lrr = 0

Lrr′ ≥ 0

12 / 57

Limitations of Distance-based clustering
When working with distances, we are quickly confronted with the curse
of dimensionality.

One flavor: in high dimensions: all points are equi-distant

13 / 57

The curse of dimensionality
Consider the case where we have many covariates. We want to use a
distance-based clustering method.

14 / 57

The curse of dimensionality
Consider the case where we have many covariates. We want to use a
distance-based clustering method.

Basically, we need to define distance and look for small multi-
dimensional "balls" around the data points. With many covariates this
becomes difficult.

15 / 57

The curse of dimensionality
Imagine we have equally spaced data and that each covariate is in
. We want something that clusters points into local regions, containg
some reasonably small amount of data points (say 10%). Let's imagine
these are high-dimensional cubes.

[0, 1]

16 / 57

The curse of dimensionality
Imagine we have equally spaced data and that each covariate is in
. We want something that clusters points into local regions, containg
some reasonably small amount of data points (say 10%). Let's imagine
these are high-dimensional cubes.

If we have covariates and we are forming -dimensional cubes, then
each side of the cube must have size determined by

.

[0, 1]

p p

l

l × l × ⋯ × l = lp = .10

17 / 57

The curse of dimensionality

If the number of covariates is p=10, then . So it really
isn't local! If we reduce the percent of data we consider to 1%, .
Still not very local.

l = .11/10 = .8

l = 0.63

18 / 57

The curse of dimensionality

If the number of covariates is p=10, then . So it really
isn't local! If we reduce the percent of data we consider to 1%, .
Still not very local.

If we keep reducing the size of the neighborhoods we will end up with
very small number of data points in each cluster and require a large
number of clusters.

l = .11/10 = .8

l = 0.63

19 / 57

K-means Clustering
A commonly used algorithm to perform clustering is the K-means
algorithm.

It is appropriate when using squared Euclidean distance as the measure
of object dissimilarity.

d(xi,xi′) =
p

∑
j=1

(xij − xi′j)
2

= ∥xi − xi′∥
2

20 / 57

K-means Clustering
K-means partitions observations into clusters, with provided as a
parameter.

Given some clustering, or partition, , denote cluster assignment of
observation to cluster is denoted as .

K K

C

xi k ∈ {1, … , K} C(i) = k

21 / 57

K-means Clustering
K-means partitions observations into clusters, with provided as a
parameter.

Given some clustering, or partition, , denote cluster assignment of
observation to cluster is denoted as .

K-means minimizes this clustering criterion:

K K

C

xi k ∈ {1, … , K} C(i) = k

W(C) =
K

∑
k=1

∑
i: C(i)=k

∑
i
′: C(i

′)=k

∥xi − xi′∥21

2

22 / 57

K-means Clustering
This is equivalent to minimizing

with:

 is the average of predictor over the observations assigned to
cluster ,

 is the number of observations assigned to cluster

W(C) =
K

∑
k=1

Nk ∑
i: C(i)=k

∥xi − x̄k∥21

2

x̄k = (x̄k1, … , x̄kp)
x̄kj j

k

Nk k

23 / 57

K-means Clustering

Minimize the total distance given by each observation to the mean
(centroid) of the cluster to which the observation is assigned.

W(C) =
K

∑
k=1

Nk ∑
i: C(i)=k

∥xi − x̄k∥21

2

24 / 57

K-means Clustering
An iterative algorithm is used to minimize this criterion

1. Initialize by choosing observations as centroids
2. Assign each observation to the cluster with the nearest centroid, i.e.,

set
3. Update centroids
4. Iterate steps 2 and 3 until convergence

K m1, m2, … , mk

i

C(i) = arg min1≤k≤K ∥xi − mk∥2

mk = x̄k

25 / 57

Here we illustrate the
k-means algorithm
over four iterations on
our example data
with .

K-means Clustering

K = 4

26 / 57

K-means Clustering
Criterion is reduced in each iteration so the algorithm is assured
to converge.

Not a convex criterion, the clustering we obtain may not be globally
optimal.

In practice, the algorithm is run with multiple initializations (step 0) and
the best clustering achieved is used.

W(C)

27 / 57

K-means Clustering
Also, selection of observations as centroids can be improved using the
K-means++ algorithm:

1. Choose an observation as centroid uniformly at random
2. To choose centroid , compute for each observation not chosen

as a centroid the distance to the nearest centroid

3. Set centroid to an observation randomly chosen with probability

4. Iterate steps 1 and 2 until centroids are chosen

m1

mk i

di = min1≤l<k ∥xi − ml∥2

mk

e
d

i

∑
i′ e

d

i′

K

28 / 57

Choosing the number of clusters
The number of parameters must be determined before running the K-
means algorithm.

There is no clean direct method for choosing the number of clusters to
use in the K-means algorithm (e.g. no cross-validation method)

29 / 57

Looking at criterion
 alone is not

sufficient as the
criterion will become
smaller as the value
of is reduced.

Choosing the number of clusters

W(C)

K

30 / 57

Choosing the number of clusters
We can use properties of this plot for ad-hoc selection.

Suppose there is a true underlying number of clusters in the data,

improvement in the statistic will be fast for values of

slower for values of .

K∗

WK(C)

K ≤ K∗

K > K∗

31 / 57

Choosing the number of clusters
Improvement in the statistic will be fast for values of

In this case, there will be a cluster which will contain observations
belonging to two of the true underlying clusters, and therefore will have
poor within cluster similarity.

As is increased, observations may then be separated into separate
clusters, providing a sharp improvement in the statistic.

WK(C) K ≤ K∗

K

WK(C)

32 / 57

Choosing the number of clusters
Improvement in the statistic will be slower for values of

In this case, observations belonging to a single true cluster are split into
multiple cluster, all with generally high within-cluster similarity,

Splitting these clusters further will not improve the statistic very
sharply.

WK(C)

K > K∗

WK(C)

33 / 57

The curve will
therefore have an
inflection point
around .

Choosing the number of clusters

K
∗

34 / 57

Choosing the number of clusters
The gap statistic is used to identify the inflection point in the curve.

It compares the behavior of the statistic based on the data with
the behavior of the statistic for data generated uniformly at
random over the range of the data.

Chooses the that maximizes the gap between these two
curves.

WK(C)

WK(C)

K WK(C)

35 / 57

For this dataset, the
gap statistic suggests
there is no clear
cluster structure and
therefore is
the best choice.

A choice of is
also appropriate.

Choosing the number of clusters

K = 1

K = 4

36 / 57

K-medioids clustering
A variant of the same algorithm for distance that are not Euclidean

Input: Distance matrix between observations
Output: Cluster assignments, and a representative data point for each
cluster (medioid)

Advantage: Can apply to situations where distances between
observations are available but not feature vectors (e.g., network data)

d(xi,xk)

37 / 57

K-medioids clustering
1. Initialize by choosing observations as medioids
2. Assign each observation to the cluster with the nearest medioid, i.e.,

set
3. Update medioids

4. Iterate steps 2 and 3 until convergence

K m1,m2, … ,mk

i

C(i) = arg min1≤k≤K d(xi,mk)

mk = arg minxi s.t. C(i)=k∑j s.t. C(j)=k d(xi,xj)

38 / 57

Large-scale clustering
Cost of K-means as presented:

Each iteration: Compute distance for each point to centroid O(knp)

39 / 57

Large-scale clustering
Cost of K-means as presented:

Each iteration: Compute distance for each point to centroid

This implies we have to do multiple passes over entire dataset.

Not good for massive datasets

O(knp)

40 / 57

Large-scale clustering
Cost of K-means as presented:

Each iteration: Compute distance for each point to centroid

This implies we have to do multiple passes over entire dataset.

Not good for massive datasets

Can we do this in "almost" a single pass?

O(knp)

41 / 57

Large-scale clustering (BFR Algorithm)
1. Select points as before
2. Process data file in chunks:

Set chunk size so each can be processed in main memory
Will use memory for workspace so not entire memory available

k

42 / 57

Large-scale clustering (BFR Algorithm)
For each chunk

All points sufficiently close to the centroid of one of the clusters is
assigned to that cluster (Discard Set)

k

43 / 57

Large-scale clustering (BFR Algorithm)
For each chunk

All points sufficiently close to the centroid of one of the clusters is
assigned to that cluster (Discard Set)

Remaining points are clustered (e.g., using -means with some value
of . Two cases

Clusters with more than one point (Compressed Set)
Singleton clusters (Retained Set)

k

k

k

44 / 57

Large-scale clustering (BFR Algorithm)
For each chunk

All points sufficiently close to the centroid of one of the clusters is
assigned to that cluster (Discard Set)

Remaining points are clustered (e.g., using -means with some value
of . Two cases

Clusters with more than one point (Compressed Set)
Singleton clusters (Retained Set)

Try to merge clusters in Compressed Set

k

k

k

45 / 57

Large-scale clustering (BFR Algorithm)
What is sufficiently close?

"Weighted" distance to centroid below some threshold.

: cluster mean for feature
: cluster standard deviation of feature


 
⎷

d

∑
i=1

(pi − ci)2

σi

ci i

σi i

46 / 57

Large-scale clustering (BFR Algorithm)

Assumption: points are distributed along axis-parallel ellipses

47 / 57

Large-scale clustering (BFR Algorithm)
Under this assumption, we only need to store means and variances to
calculate distances

48 / 57

Large-scale clustering (BFR Algorithm)
Under this assumption, we only need to store means and variances to
calculate distances

We can do this by storing for each cluster :

 number of points assigned to cluster
 sum of values of feature in cluster
 sum of squares of values of feature in cluster

j

Nj

sij i j

s2

ij i j

49 / 57

Large-scale clustering (BFR Algorithm)
Under this assumption, we only need to store means and variances to
calculate distances

We can do this by storing for each cluster :

 number of points assigned to cluster
 sum of values of feature in cluster
 sum of squares of values of feature in cluster

Constant amount of space to represent cluster

j

Nj

sij i j

s2

ij i j

50 / 57

Large-scale clustering (BFR Algorithm)
Under this assumption, we only need to store means and variances to
calculate distances

We can do this by storing for each cluster :

 number of points assigned to cluster
 sum of values of feature in cluster
 sum of squares of values of feature in cluster

Constant amount of space to represent cluster

Exercise. show these are sufficient to calculate weighted distance

j

Nj

sij i j

s2

ij i j

51 / 57

Large-scale clustering (BFR Algorithm)
This is used to represent (final) clusters in Discard Set and (partial)
clusters in Compressed Set

Only points explicitly in memory are those in the Retained Set

52 / 57

Large-scale clustering (BFR Algorithm)
This is used to represent (final) clusters in Discard Set and (partial)
clusters in Compressed Set

Only points explicitly in memory are those in the Retained Set

Points outside of Retained Set are never kept in memory (written out
along with cluster assignment)

53 / 57

Large-scale clustering (BFR Algorithm)

Merging clusters in Compressed Set

Example: Merge if the variance of combined clusters is sufficiently close
to variance of separate clusters

54 / 57

Large-scale clustering (BFR Algorithm)
After all data is processed:

Assign points in Retained Set to cluster with nearest centroid

Merge partial clusters in Compressed Set with final clusters in
Discarded Set

55 / 57

Large-scale clustering (BFR Algorithm)
After all data is processed:

Assign points in Retained Set to cluster with nearest centroid

Merge partial clusters in Compressed Set with final clusters in
Discarded Set

Or,

Flag all of these as outliers

56 / 57

Summary
Clustering algorithms used to partition data into groups of similar
observations
K-means and K-mediods: iterative algorithms to minimize a partition
objective function
Optimization solution depends on initialization: K-means++ improved
initialization
BFR Algorithm: how to solve for massive datasets in "almost" one
pass of algorithm

57 / 57

