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Latent semantic analysis

Documents as mixtures of topics (Hoffman 1999)
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Latent semantic analysis
We have a set of documents D
Each document modeled as a bag-of-words (bow) over dictionary W'

T 4: the number of times word w € W appears in document de D.
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Latent semantic analysis

Let's start with a simple model based on the frequency of word
occurrences.

Each document is modeled as ng4 draws from a Multinomial distribution
with parameters 83 = {01 4,...,0w 4}

Note 6,y q > 0and > 0,4 = 1.
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Latent semantic analysis

Probability of observed corpus D

D W
Pr(DI{64}) o< [T I] 6%

d=1 w=1
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Latent semantic analysis

Problem 1:

Prove MLE 6, g = =2

nq

5/46



Constrained optimization

We have a problem of type

min,, fo(x)
s.t.  fi(z) <0i=1,...,m
hile)=0¢t=1,...,p

Note: This discussion follows Boyd and Vandenberghe, Convex
Optimization
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Constrained optimization

To solve these type of problems we will look at the Lagrangian function:

p
L(z, A\, v) +Z)\ fi(z +ZVz'gz'($)
i—1
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Constrained optimization

We'll see these in more detalil later, but there is a beautiful result giving
optimality conditions based on the Lagrangian:

Suppose T, ) and 7 are optimal, then
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Constrained optimization

We can use the gradient and feasibility conditions to prove the MLE
result.
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Probablistic Latent Semantic Analysis

Let's change our document model to introduce topics.

The key idea is that the probability of observing a word in a document is
given by two pieces:

e The probability of observing a fopic in a document, and
e The probability of observing a word given a topic

Pr(w,d) = »  Pr(w|t)Pr(t|d)

t=1
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Probablistic Latent Semantic Analysis

So, we rewrite corpus probability as

(D|{Pd}{9t OCHH (Zptd wt) |

d=1 w=1
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Probablistic Latent Semantic Analysis

So, we rewrite corpus probability as

(D|{Pd}{9t OCHH (Zptd wt) |

d=1 w=1

Mixture of topics!!
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Probablistic Latent Semantic Analysis

A fully observed model

Assume you know the /atent number of occurences of word w In
document d generated from topic ¢:

Aydt suchthat Y, Ay gt = Ty g

In that case we can rewrite corpus probability:

D W T

Pr(D|{pa},{0:}) OCHHHPthwt bt

=1 w=1 t=
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Probablistic Latent Semantic Analysis

Problem 2 Show MLESs given by

W
2’?‘ _ Z’w:l Awadat
t,d T T W
D
0 Zdzl Ay dt
0t =

|14 D
Z’w:l Zd:]. Awadat
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Probablistic Latent Semantic Analysis
Since we don't observe Aw,d,t we use the EM algorithm

At each iteration (given current parameters {p,} and {60;} find
responsibility

Yw,dt — E[Aw,d,t‘{pd}a {gt}]

and maximize fully observed likelihood plugging in 7y, 4.+ for Aw,d,t
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Probablistic Latent Semantic Analysis
Problem 4: Show

pt,dew,t
T
> 1 Pr,dbuwyt

Yw,dt = Lw,d X
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Approximate Inference by Sampling
Ultimately, what we are interested in is learning topics
Perhaps instead of finding parameters 6 that maximize likelihood

Sample from a distribution Pr(6|D) that gives us topic estimates
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Approximate Inference by Sampling

Ultimately, what we are interested in is learning topics

Perhaps instead of finding parameters 6 that maximize likelihood
Sample from a distribution Pr(6|D) that gives us topic estimates

But, we only have talked about Pr(D)|#) how can we sample
parameters?
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Approximate Inference by Sampling
Like EM, the trick here is to expand model with /atent data Z™

And sample from distribution Pr(8, Z™|Z)
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Approximate Inference by Sampling
Like EM, the trick here is to expand model with /atent data Z™
And sample from distribution Pr(8, Z™|Z)

This is challenging, but sampling from Pr(0|Z™, Z) and Pr(Z™|0, Z)
IS easier
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Approximate Inference by Sampling
The Gibbs Sampler does exactly that

Property. After some rounds, samples from the conditional distributions
Pr(0|1Z2™, Z)

Correspond to samples from marginal Pr(6|Z) = ) . Pr(0,Z™|Z)
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Approximate Inference by Sampling
Quick aside, how to simulate data for pLSA?

» Generate parameters {pq} and {6;}
 Generate Ay 4+
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Approximate Inference by Sampling

Let's go backwards, let's deal with A, 4
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Approximate Inference by Sampling
Let's go backwards, let's deal with Aw,d,t
Aw7d7t ™~ Mu]'txw,d (fylwada]J tee 77’w7d7T)

Where v, 4t Was as given by E-step
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Approximate Inference by Sampling
Let's go backwards, let's deal with Aw,d,t
Aw7d7t ™~ Mu]'txw,d (’Y’w,d,]J tee 77’w7d7T)

Where v, 4t Was as given by E-step

for d 1in range(num_docs):
deltald,w,:] = np.random.multinomial(doc_mat[d,w],

gamma[d,w,:])
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Approximate Inference by Sampling

Hmm, that's a problem since we need x, 4...

But, we know Pr(w,d) = ) _, pt abw.+ SO, let's use that to generate
each x,, 4 as

Ty q ~ Mult,, (Pr(l,d),...,Pr(W,d))
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Approximate Inference by Sampling

Hmm, that's a problem since we need x, 4...

But, we know Pr(w,d) = ) _, pt abw.+ SO, let's use that to generate
each x,, 4 as

Ty q ~ Mult,, (Pr(l,d),...,Pr(W,d))

for d in range(num_docs):

doc_mat[d,:] = np.random.multinomial(nw[d], np.sum(p[:,d] *x theta), axis=0)
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Approximate Inference by Sampling

Now, how about p4s? How do we generate the parameters of a
Multinomial distribution?
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Approximate Inference by Sampling

Now, how about p4s? How do we generate the parameters of a
Multinomial distribution?

This I1s where the Dirichlet distribution comes in...

If pg ~ Dir(a), then

T
Pr(pqg) o< | [ P}
t=1
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Approximate Inference by Sampling

Some interesting properties:

8%
E[pt,d] —
E:ﬂC%’
So, if we set all oy = 1 we will tend to have uniform probability over

topics ( 1/t each on average)

If we increase a; = 100 it will also have uniform probability but will have
very little variance (it will almost always be 1 / 1)
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Approximate Inference by Sampling

So, we can say pg ~ Dir(a) and 6; ~ Dir(5)
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Approximate Inference by Sampling
So, we can say pg ~ Dir(a) and 6; ~ Dir(3)

And generate data as (with a; = 1)

for d in range(num_docs):

pl:,d] = np.random.dirichlet(l. * np.ones(num_topics))
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Approximate Inference by Sampling

So what we have is a prior over parameters {pg} and {6;}: Pr(pi|a)
and Pr(6;|5)

And we can formulate a distribution for missing data Aw,d,t:

P’I“(Awd,t‘pd, Ht, a, 5) —
Pr(Ay.at|pd, 0:) Pr(pa|a) Pr(6: 5)
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Approximate Inference by Sampling

However, what we care about is the posterior distribution
Pr(pd‘Aw,d,ta Hta x, 5)

What do we do???
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Approximate Inference by Sampling

Another neat property of the Dirichlet distribution is that it is conjugate to
the Multinomial

If 6| ~ Dir(a) and X |6 ~ Multinomial(8), then

0| X, a ~ Dir(X + a)
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Approximate Inference by Sampling

That means we can sample pg from

DPtd ~ Dir(z Aydr + o)

and

Hw,t ™ DII(Z Aw,d,t + 6)
d
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Approximate Inference by Sampling

Coincidentally, we have just specified the Latent Dirichlet Allocation
method for topic modeling.

This is the most commonly used method for topic modeling

Y
Sisirecy

N
M
J

Blei, Ng, Jordan (2003), JMLR 37 | 46



Approximate Inference by Sampling

We can now specify a full Gibbs Sampler for an LDA mixture model.

Given:

e Word-document counts &, 4
e Number of topics K
e Prior parameters o« and 3

Do: Learn parameters {pg} and {6;} for K topics
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Approximate Inference by Sampling
Step O: Initialize parameters {p;} and {6;}

pa ~ Dir(a)
and

Ht ~/ DlI'(IB)
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Approximate Inference by Sampling
Step 1.
Sample A, 4+ based on current parameters {p4} and {6;}

Awada' ™~ Mu}'tww,d (f)/’w,d,].) vt 77w7d7T)
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Approximate Inference by Sampling
Step 2:

Sample parameters from

Dt,d ~ Dif(z Ayat + )

and

Hw,t ™~ Dlr(z Aw,d,t + ﬁ)
d
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Approximate Inference by Sampling
Step 3:

Get samples for a few iterations (e.g., 200), we want to reach a
stationary distribution...
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Approximate Inference by Sampling

Step 4:

Estimate Aw,d,t as the average of the estimates from the last m
iterations (e.g., m=500)
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Approximate Inference by Sampling
Step 3:

Estimate parameters p; and 6, based on estimated Aw,d,t

A Zw Aw,d,t —I_ 8
Pta = A

Zt wa Aw dt T O
~ Zd w,d,t + B
wa,t —
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Mixture models

We have now seen two different mixture models: soft k-means and topic
models
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Mixture models

We have now seen two different mixture models: soft k-means and topic
models

Two inference procedures.

e Exact Inference with Maximum Likelihood using the EM algorithm
e Approximate Inference using Gibbs Sampling
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