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Latent semantic analysis
We have a set of documents 

Each document modeled as a bag-of-words (bow) over dictionary .

: the number of times word  appears in document .

D

W

xw,d w ∈ W d ∈ D
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Latent semantic analysis
Let's start with a simple model based on the frequency of word
occurrences.

Each document is modeled as  draws from a Multinomial distribution
with parameters 

Note  and .

nd

θd = {θ1,d, … , θW ,d}

θw,d ≥ 0 ∑w θw,d = 1
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Latent semantic analysis
Probability of observed corpus D

Pr(D|{θd}) ∝
D

∏
d=1

W

∏
w=1

θ
xw,d

w,d
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Latent semantic analysis

Problem 1:

Prove MLE θ̂w,d =
xw,d

nd
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Constrained optimization
We have a problem of type

Note: This discussion follows Boyd and Vandenberghe, Convex
Optimization

minx f0(x)

s.t. fi(x) ≤ 0 i = 1, … ,m

hi(x) = 0 i = 1, … , p
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Constrained optimization
To solve these type of problems we will look at the Lagrangian function:

L(x,λ, ν) = f0(x) +
m

∑
i=1

λifi(x) +

p

∑
i=1

νigi(x)
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Constrained optimization
We'll see these in more detail later, but there is a beautiful result giving
optimality conditions based on the Lagrangian:

Suppose ,  and  are optimal, then~x
~
λ ~ν

fi(
~x) ≤ 0

hi(
~x) = 0

~
λi ≥ 0

~
λifi(

~x) = 0

∇L(~x,
~
λ, ~ν) = 0

8 / 46

Constrained optimization
We can use the gradient and feasibility conditions to prove the MLE
result.
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Probablistic Latent Semantic Analysis
Let's change our document model to introduce topics.

The key idea is that the probability of observing a word in a document is
given by two pieces:

The probability of observing a topic in a document, and
The probability of observing a word given a topic

Pr(w, d) =
T

∑
t=1

Pr(w|t)Pr(t|d)
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Probablistic Latent Semantic Analysis
So, we rewrite corpus probability as

Pr(D|{pd}{θt}) ∝
D

∏
d=1

W

∏
w=1

(
T

∑
t=1

pt,dθw,t)

xw,d

11 / 46

Probablistic Latent Semantic Analysis
So, we rewrite corpus probability as

Mixture of topics!!

Pr(D|{pd}{θt}) ∝
D

∏
d=1

W

∏
w=1

(
T

∑
t=1

pt,dθw,t)

xw,d
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Probablistic Latent Semantic Analysis

A fully observed model

Assume you know the latent number of occurences of word  in
document  generated from topic :

, such that .

In that case we can rewrite corpus probability:

w

d t

Δw,d,t ∑t Δw,d,t = xw,d

Pr(D|{pd}, {θt}) ∝
D

∏
d=1

W

∏
w=1

T

∏
t=1

(pt,dθw,t)
Δw,d,t
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Probablistic Latent Semantic Analysis
Problem 2 Show MLEs given by

p̂ t,d =
∑

W
w=1 Δw,d,t

∑
T

t=1 ∑
W

w=1 Δw,d,t

θ̂ t,d =
∑

D
d=1 Δw,d,t

∑
W

w=1 ∑
D

d=1 Δw,d,t
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Probablistic Latent Semantic Analysis
Since we don't observe  we use the EM algorithm

At each iteration (given current parameters  and  find
responsibility

and maximize fully observed likelihood plugging in  for 

Δw,d,t

{pd} {θd}

γw,d,t = E[Δw,d,t|{pd}, {θt}]

γw,d,t Δw,d,t
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Probablistic Latent Semantic Analysis
Problem 4: Show

γw,d,t = xw,d ×
pt,dθw,t

∑
T
t′=1 pt′,dθw,t′
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Approximate Inference by Sampling
Ultimately, what we are interested in is learning topics

Perhaps instead of finding parameters  that maximize likelihood

Sample from a distribution  that gives us topic estimates

θ

Pr(θ|D)
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Approximate Inference by Sampling
Ultimately, what we are interested in is learning topics

Perhaps instead of finding parameters  that maximize likelihood

Sample from a distribution  that gives us topic estimates

But, we only have talked about  how can we sample
parameters?

θ

Pr(θ|D)

Pr(D|θ)
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Approximate Inference by Sampling
Like EM, the trick here is to expand model with latent data 

And sample from distribution 

Zm

Pr(θ,Zm|Z)
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Approximate Inference by Sampling
Like EM, the trick here is to expand model with latent data 

And sample from distribution 

This is challenging, but sampling from  and 
is easier

Zm

Pr(θ,Zm|Z)

Pr(θ|Zm,Z) Pr(Zm|θ,Z)
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Approximate Inference by Sampling
The Gibbs Sampler does exactly that

Property: After some rounds, samples from the conditional distributions 

Correspond to samples from marginal 

Pr(θ|Zm,Z)

Pr(θ|Z) = ∑Zm Pr(θ,Zm|Z)
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Approximate Inference by Sampling
Quick aside, how to simulate data for pLSA?

Generate parameters  and 
Generate 

{pd} {θt}

Δw,d,t
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Approximate Inference by Sampling
Let's go backwards, let's deal with Δw,d,t
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Approximate Inference by Sampling
Let's go backwards, let's deal with 

Where  was as given by E-step

Δw,d,t

Δw,d,t ∼ Multxw,d
(γw,d,1, … , γw,d,T )

γw,d,t
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Approximate Inference by Sampling
Let's go backwards, let's deal with 

Where  was as given by E-step

for d in range(num_docs):

  delta[d,w,:] = np.random.multinomial(doc_mat[d,w],

      gamma[d,w,:])

Δw,d,t

Δw,d,t ∼ Multxw,d
(γw,d,1, … , γw,d,T )

γw,d,t
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Approximate Inference by Sampling
Hmm, that's a problem since we need ...

But, we know  so, let's use that to generate
each  as

xw,d

Pr(w, d) = ∑t pt,dθw,t

xw,d

xw,d ∼ Multnd
(Pr(1, d), … ,Pr(W , d))

26 / 46

Approximate Inference by Sampling
Hmm, that's a problem since we need ...

But, we know  so, let's use that to generate
each  as

for d in range(num_docs):

  doc_mat[d,:] = np.random.multinomial(nw[d], np.sum(p[:,d] * theta), axis=0)

xw,d

Pr(w, d) = ∑t pt,dθw,t

xw,d

xw,d ∼ Multnd
(Pr(1, d), … ,Pr(W , d))
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Approximate Inference by Sampling
Now, how about ? How do we generate the parameters of a
Multinomial distribution?

pd
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Approximate Inference by Sampling
Now, how about ? How do we generate the parameters of a
Multinomial distribution?

This is where the Dirichlet distribution comes in...

If , then

pd

pd ∼ Dir(α)

Pr(pd) ∝
T

∏
t=1

p
αt−1
t,d
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Approximate Inference by Sampling
Some interesting properties:

So, if we set all  we will tend to have uniform probability over
topics (  each on average)

If we increase  it will also have uniform probability but will have
very little variance (it will almost always be )

E[pt,d] =
αt

∑t′ αt′

αt = 1

1/t

αt = 100

1/t
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Approximate Inference by Sampling
So, we can say  and pd ∼ Dir(α) θt ∼ Dir(β)
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Approximate Inference by Sampling
So, we can say  and 

And generate data as (with )

for d in range(num_docs):

  p[:,d] = np.random.dirichlet(1. * np.ones(num_topics))

pd ∼ Dir(α) θt ∼ Dir(β)

αt = 1
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Approximate Inference by Sampling
So what we have is a prior over parameters  and : 
and 

And we can formulate a distribution for missing data :

{pd} {θt} Pr(pd|α)

Pr(θt|β)

Δw,d,t

Pr(Δw,d,t|pd, θt,α,β) =

Pr(Δw,d,t|pd, θt)Pr(pd|α)Pr(θt|β)
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Approximate Inference by Sampling
However, what we care about is the posterior distribution

What do we do???

Pr(pd|Δw,d,t, θt,α,β)
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Approximate Inference by Sampling
Another neat property of the Dirichlet distribution is that it is conjugate to
the Multinomial

If  and , thenθ|α ∼ Dir(α) X|θ ∼ Multinomial(θ)

θ|X,α ∼ Dir(X + α)
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Approximate Inference by Sampling
That means we can sample  from

and

pd

pt,d ∼ Dir(∑
w

Δw,d,t + α)

θw,t ∼ Dir(∑
d

Δw,d,t + β)
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Approximate Inference by Sampling
Coincidentally, we have just specified the Latent Dirichlet Allocation
method for topic modeling.

This is the most commonly used method for topic modeling
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Approximate Inference by Sampling
We can now specify a full Gibbs Sampler for an LDA mixture model.

Given:

Word-document counts 
Number of topics 
Prior parameters  and 

Do: Learn parameters  and  for  topics

xw,d

K

α β

{pd} {θt} K
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Approximate Inference by Sampling
Step 0: Initialize parameters  and 

and

{pd} {θt}

pd ∼ Dir(α)

θt ∼ Dir(β)
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Approximate Inference by Sampling
Step 1:

Sample  based on current parameters  and Δw,d,t {pd} {θt}

Δw,d,. ∼ Multxw,d
(γw,d,1, … , γw,d,T )
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Approximate Inference by Sampling
Step 2:

Sample parameters from

and

pt,d ∼ Dir(∑
w

Δw,d,t + α)

θw,t ∼ Dir(∑
d

Δw,d,t + β)
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Approximate Inference by Sampling
Step 3:

Get samples for a few iterations (e.g., 200), we want to reach a
stationary distribution...
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Approximate Inference by Sampling
Step 4:

Estimate  as the average of the estimates from the last 
iterations (e.g., m=500)

Δ̂w,d,t m
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Approximate Inference by Sampling
Step 5:

Estimate parameters  and  based on estimated pd θt Δ̂w,d,t

p̂ t,d =
∑w Δ̂w,d,t + α

∑t∑w Δ̂w,d,t + α

θ̂w,t =
∑d Δ̂w,d,t + β

∑w∑d Δ̂w,d,t + β
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Mixture models
We have now seen two different mixture models: soft k-means and topic
models
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Mixture models
We have now seen two different mixture models: soft k-means and topic
models

Two inference procedures:

Exact Inference with Maximum Likelihood using the EM algorithm
Approximate Inference using Gibbs Sampling
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Latent semantic analysis

Problem 1:

Prove MLE θ̂w,d =
xw,d

nd
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Constrained optimization
We have a problem of type

Note: This discussion follows Boyd and Vandenberghe, Convex
Optimization

minx f0(x)

s.t. fi(x) ≤ 0 i = 1, … , m

hi(x) = 0 i = 1, … , p
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Constrained optimization
To solve these type of problems we will look at the Lagrangian function:
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Constrained optimization
We'll see these in more detail later, but there is a beautiful result giving
optimality conditions based on the Lagrangian:

Suppose ,  and  are optimal, then~x
~
λ ~ν

fi(
~x) ≤ 0

hi(
~x) = 0

~
λi ≥ 0

~
λifi(
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~
λ, ~ν) = 0

8 / 46



Constrained optimization
We can use the gradient and feasibility conditions to prove the MLE
result.
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Probablistic Latent Semantic Analysis
Let's change our document model to introduce topics.

The key idea is that the probability of observing a word in a document is
given by two pieces:

The probability of observing a topic in a document, and
The probability of observing a word given a topic

Pr(w, d) =
T

∑
t=1

Pr(w|t)Pr(t|d)
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Probablistic Latent Semantic Analysis

A fully observed model

Assume you know the latent number of occurences of word  in
document  generated from topic :

, such that .
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Probablistic Latent Semantic Analysis
Problem 2 Show MLEs given by

p̂ t,d =
∑

W

w=1 Δw,d,t

∑
T

t=1 ∑
W

w=1 Δw,d,t

θ̂ t,d =
∑

D

d=1 Δw,d,t

∑
W

w=1
∑

D

d=1
Δw,d,t
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Probablistic Latent Semantic Analysis
Since we don't observe  we use the EM algorithm

At each iteration (given current parameters  and  find
responsibility

and maximize fully observed likelihood plugging in  for 
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Probablistic Latent Semantic Analysis
Problem 4: Show

γw,d,t = xw,d ×
pt,dθw,t

∑
T
t′=1

pt′,dθw,t′

16 / 46



Approximate Inference by Sampling
Ultimately, what we are interested in is learning topics

Perhaps instead of finding parameters  that maximize likelihood

Sample from a distribution  that gives us topic estimates

θ

Pr(θ|D)
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Approximate Inference by Sampling
Ultimately, what we are interested in is learning topics

Perhaps instead of finding parameters  that maximize likelihood

Sample from a distribution  that gives us topic estimates

But, we only have talked about  how can we sample
parameters?

θ

Pr(θ|D)

Pr(D|θ)
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Approximate Inference by Sampling
Like EM, the trick here is to expand model with latent data 

And sample from distribution 

Z
m

Pr(θ, Z
m|Z)
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Approximate Inference by Sampling
Like EM, the trick here is to expand model with latent data 

And sample from distribution 

This is challenging, but sampling from  and 
is easier

Z
m

Pr(θ, Z
m|Z)

Pr(θ|Zm, Z) Pr(Z
m|θ, Z)
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Approximate Inference by Sampling
The Gibbs Sampler does exactly that

Property: After some rounds, samples from the conditional distributions 

Correspond to samples from marginal 

Pr(θ|Zm, Z)

Pr(θ|Z) = ∑
Zm Pr(θ, Z

m|Z)
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Approximate Inference by Sampling
Quick aside, how to simulate data for pLSA?

Generate parameters  and 
Generate 

{pd} {θt}

Δw,d,t
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Approximate Inference by Sampling
Let's go backwards, let's deal with Δw,d,t
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Approximate Inference by Sampling
Let's go backwards, let's deal with 

Where  was as given by E-step

Δw,d,t

Δw,d,t ∼ Multxw,d
(γw,d,1, … , γw,d,T )

γw,d,t
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Approximate Inference by Sampling
Let's go backwards, let's deal with 

Where  was as given by E-step

for d in range(num_docs):

  delta[d,w,:] = np.random.multinomial(doc_mat[d,w],

      gamma[d,w,:])

Δw,d,t

Δw,d,t ∼ Multxw,d
(γw,d,1, … , γw,d,T )

γw,d,t
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Approximate Inference by Sampling
Hmm, that's a problem since we need ...

But, we know  so, let's use that to generate
each  as

xw,d

Pr(w, d) = ∑t pt,dθw,t

xw,d

xw,d ∼ Multnd
(Pr(1, d), … ,Pr(W , d))
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Approximate Inference by Sampling
Hmm, that's a problem since we need ...

But, we know  so, let's use that to generate
each  as

for d in range(num_docs):

  doc_mat[d,:] = np.random.multinomial(nw[d], np.sum(p[:,d] * theta), axis=0)

xw,d

Pr(w, d) = ∑t pt,dθw,t

xw,d

xw,d ∼ Multnd
(Pr(1, d), … ,Pr(W , d))
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Approximate Inference by Sampling
Now, how about ? How do we generate the parameters of a
Multinomial distribution?

pd
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Approximate Inference by Sampling
Now, how about ? How do we generate the parameters of a
Multinomial distribution?

This is where the Dirichlet distribution comes in...

If , then

pd

pd ∼ Dir(α)

Pr(pd) ∝
T

∏
t=1

p
αt−1
t,d
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Approximate Inference by Sampling
Some interesting properties:

So, if we set all  we will tend to have uniform probability over
topics (  each on average)

If we increase  it will also have uniform probability but will have
very little variance (it will almost always be )

E[pt,d] =
αt

∑t′ αt′

αt = 1

1/t

αt = 100

1/t
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Approximate Inference by Sampling
So, we can say  and pd ∼ Dir(α) θt ∼ Dir(β)
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Approximate Inference by Sampling
So, we can say  and 

And generate data as (with )

for d in range(num_docs):

  p[:,d] = np.random.dirichlet(1. * np.ones(num_topics))

pd ∼ Dir(α) θt ∼ Dir(β)

αt = 1
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Approximate Inference by Sampling
So what we have is a prior over parameters  and : 
and 

And we can formulate a distribution for missing data :

{pd} {θt} Pr(pd|α)

Pr(θt|β)

Δw,d,t

Pr(Δw,d,t|pd, θt,α,β) =

Pr(Δw,d,t|pd, θt)Pr(pd|α)Pr(θt|β)
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Approximate Inference by Sampling
However, what we care about is the posterior distribution

What do we do???

Pr(pd|Δw,d,t, θt,α,β)

34 / 46



Approximate Inference by Sampling
Another neat property of the Dirichlet distribution is that it is conjugate to
the Multinomial

If  and , thenθ|α ∼ Dir(α) X|θ ∼ Multinomial(θ)

θ|X, α ∼ Dir(X + α)
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Approximate Inference by Sampling
That means we can sample  from

and

pd

pt,d ∼ Dir(∑
w

Δw,d,t + α)

θw,t ∼ Dir(∑
d

Δw,d,t + β)
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Blei, Ng, Jordan (2003), JMLR

Approximate Inference by Sampling
Coincidentally, we have just specified the Latent Dirichlet Allocation
method for topic modeling.

This is the most commonly used method for topic modeling
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Approximate Inference by Sampling
We can now specify a full Gibbs Sampler for an LDA mixture model.

Given:

Word-document counts 
Number of topics 
Prior parameters  and 

Do: Learn parameters  and  for  topics

xw,d

K

α β

{pd} {θt} K
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Approximate Inference by Sampling
Step 0: Initialize parameters  and 

and

{pd} {θt}

pd ∼ Dir(α)

θt ∼ Dir(β)
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Approximate Inference by Sampling
Step 1:

Sample  based on current parameters  and Δw,d,t {pd} {θt}

Δw,d,. ∼ Multxw,d
(γw,d,1, … , γw,d,T )

40 / 46



Approximate Inference by Sampling
Step 2:

Sample parameters from

and

pt,d ∼ Dir(∑
w

Δw,d,t + α)

θw,t ∼ Dir(∑
d

Δw,d,t + β)
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Approximate Inference by Sampling
Step 3:

Get samples for a few iterations (e.g., 200), we want to reach a
stationary distribution...
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Approximate Inference by Sampling
Step 4:

Estimate  as the average of the estimates from the last 
iterations (e.g., m=500)

Δ̂w,d,t m
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Approximate Inference by Sampling
Step 5:

Estimate parameters  and  based on estimated pd θt Δ̂w,d,t

p̂ t,d =
∑w Δ̂w,d,t + α

∑t∑w Δ̂w,d,t + α

θ̂w,t =
∑d Δ̂w,d,t + β

∑w∑d Δ̂w,d,t + β
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Mixture models
We have now seen two different mixture models: soft k-means and topic
models
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