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Why Stats?

In this class we learn Statistical and Machine Learning techniques for
data analysis.

By the time we are done, you should

e be able to read critically papers or reports that use these methods.
e be able to use these methods for daata analysis
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Why Stats?

In either case, you will need to ask yourself if findings are statistically
significant.
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Why Stats?

e Use a classification algorithm to
distinguish images

e Accurate 70 out of 100 cases.

e Could this happen by chance
alone?
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Why Stats?

To be able to answer these guestion, we need to understand some basic
probabilistic and statistical principles.

In this course unit we will review some of these principles.
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Variation, randomness and stochasticity

So far, we have not spoken about randomness and stochasticity. We
have, however, spoken about variation.

spread in a dataset
refers to the fact that
In a population of
entities there is
naturally occuring
variation in
measurements
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Variation, randomness and stochasticity

Another example: in sets of tweets b
there is natural variation in the

frequency of word usage.
B Android

Phone

word
Q
Q
Q

#trumppence16 4
#crookedhillary
#imwithyou -
#votetrump 1
#americafirst -

join -
#trump2016 4
#makeamericagreatagain -

e

5.0 25 0.0
Android / iPhone log ratio
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Variation, randomness and stochasticity

In summary, we can discuss the notion of variation without referring to
any randomness, stochasticity or noise.
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Why Probability?
Because, we do want to distinguish, when possible:

e natural occuring variation, vs.
e randomness or stochasticity
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Why Probability?

e Find loan debt for all 19-30 year old Maryland residents, and
calculate mean and standard deviation.
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Why Probability?

e Find loan debt for all 19-30 year old Maryland residents, and
calculate mean and standard deviation.

e That's difficult to do for all residents.
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Why Probability?

e Find loan debt for all 19-30 year old Maryland residents, and
calculate mean and standard deviation.

e That's difficult to do for all residents.

e Instead we sample (say by randomly sending Twitter surveys), and
estimate the average and standard deviation of debt in this population
from the sample.
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Why Probability?

Now, this presents an issue since we could do the same from a different
random sample and get a different set of estimates. Why?
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Why Probability?

Now, this presents an issue since we could do the same from a different
random sample and get a different set of estimates. Why?

Because there is naturally-occuring variation in this population.
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Why Probability?
So, a simple question to ask is:

How good are our estimates of debt mean and standard
deviation from sample of 19-30 year old Marylanders?
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Why Probability?

Another example: suppose we build a predictive model of loan debt for
19-30 year old Marylanders based on other variables (e.g., sex, income,
education, wages, etc.) from our sample.
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Why Probability?

Another example: suppose we build a predictive model of loan debt for
19-30 year old Marylanders based on other variables (e.g., sex, income,
education, wages, etc.) from our sample.

How good will this model perform when predicting debt in
general?
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Why Probability?

We use probability and statistics to answer these questions.
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Why Probability?
We use probability and statistics to answer these questions.

e Probability captures stochasticity in the sampling process, while
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Why Probability?
We use probability and statistics to answer these questions.

e Probability captures stochasticity in the sampling process, while

e we model naturally occuring variation in measurements in a
population of interest.
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One final word

The term population means
the entire collection of entities we want to model

This could include people, but also images, text, chess positions, etc.
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Random variables
The basic concept in our discussion of probabillity is the random variable.
Task: is a given tweet was generated by a bot?

Action: Sample a tweet at random from the set of all tweets ever written
and have a human expert decide if it was generated by a bot or not.

Principle: Denote this as a binary random variable X € {0, 1}, with
value 1 if the tweet is bot-gerneated and 0 otherwise.
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Random variables

The basic concept in our discussion of probabillity is the random variable.

Task: is a given tweet was generated by a bot?

Action: Sample a tweet at random from the set of all tweets ever written
and have a human expert decide if it was generated by a bot or not.

Principle: Denote this as a binary random variable X € {0, 1}, with
value 1 if the tweet is bot-gerneated and 0 otherwise.

Why is this a random value? Because it depends on the tweet that was
randomly sampled.
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(Discrete) Probability distributions

A probability distribution P : D — [0, 1] over set D of all values random
variable X can take to the interval |0, 1.
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(Discrete) Probability distributions

A probability distribution P : D — [0, 1] over set D of all values random
variable X can take to the interval |0, 1.

We start with a probability mass function p:

a. p(X = x) > 0 for all values z € D, and
b.Y) pp(X=12)=1
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(Discrete) Probability distributions

How to interpret quantity p(X = 1)?
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(Discrete) Probability distributions
How to interpret quantity p(X = 1)?

a. p(X = 1) IS the probability that a uniformly random sampled tweet is
bot-generated, which implies
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(Discrete) Probability distributions
How to interpret quantity p(X = 1)?

a. p(X = 1) IS the probability that a uniformly random sampled tweet is
bot-generated, which implies

b. the proportion of bot-generated tweets in the set of "all" tweets is
p(X =1).
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(Discrete) Probability distributions

Example The oracle of TWEET

Suppose we have a magical oracle and know for a fact that 70% of "all"
tweets are bot-generated.

18 /67



(Discrete) Probability distributions
Example The oracle of TWEET

Suppose we have a magical oracle and know for a fact that 70% of "all"
tweets are bot-generated.

Inthatcase p(X = 1) =.Tandp(X =0)=1—-.7=.3.
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(Discrete) Probability distributions

cumulative probability distribution P describes the sum of probability up
to a given value:

P(z)= > p(X=21)

£Dst. '<zx
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(Discrete) Probability distributions

Expectation
What if | randomly sampled n = 100 tweets?

How many of those do | expectto be bot-generated?
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(Discrete) Probability distributions

Expectation
What if | randomly sampled n = 100 tweets?
How many of those do | expectto be bot-generated?

Expectation is a formal concept in probability:

E[X] = 3 ap(X = 2)

xeD
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(Discrete) Probability distributions

What is the expectation of X (a single sample) in our tweet example?
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(Discrete) Probability distributions

What is the expectation of X (a single sample) in our tweet example?

EX]|=0xp(X=0)+1xp(X=1)=0x.3+1x.7=.7
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(Discrete) Probability distributions

What is the expected number of bot-generated tweets in a sample of
n = 100 tweets.

DefineY = X7 + X9 + -+ - + X100.

Then we need E|Y]
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(Discrete) Probability distributions
We have X; = {0, 1} for each of the n = 100 tweets

Each obtained by uniformly and /independently sampling from the set of
all tweets.

Then, random variable Y is the number of bot-generated tweets in my
sample of n = 100 tweets.
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(Discrete) Probability distributions

EY] =E[X; + X2+ -+ Xiq00]
E[X:] +E[X5] + - - + E[Xq90]
=T7+.7+---+.7

= 100 x .7

=70
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(Discrete) Probability distributions
This uses some facts about expectation you can show in general.

(1) For any pair of random variables X7 and X,

(2) For any random variable X and constanta, E|aX]| = aE[X].
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Estimation

So far we assume we have access to an oracle that told us
p(X=1)=.7

In reality, we don't.
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Estimation

So far we assume we have access to an oracle that told us

p(X=1)=.7.
In reality, we don't.

For our tweet analysis task, we need to estimate the proportion of "all"
tweets that are bot-generated.
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Estimation

So far we assume we have access to an oracle that told us
p(X=1)=.7

In reality, we don't.

For our tweet analysis task, we need to estimate the proportion of "all"
tweets that are bot-generated.

This is where our probability model and the expectation we derive from it

comes in.
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Estimation

Given data x1, 2,3, ...,I100,

With 67 of those tweets labeled as bot-generated (i.e., x; = 1 for 67 of
them)
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Estimation

Given data x1, 2,3, ...,I100,

With 67 of those tweets labeled as bot-generated (i.e., x; = 1 for 67 of
them)
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Estimation

Given data x1, 2,3, ...,I100,

With 67 of those tweets labeled as bot-generated (i.e., x; = 1 for 67 of
them)

We cansay y = ) . z; = 67.
We expecty = np withp = p(X = 1)

Use that observation to estimate p!

27167



Estimation

np = 67 =
100p = 67 =
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Estimation
Our estimate ($\hat{p}=.679%) is wrong, but close.
Can we ever get it right?

Can | say how wrong | should expect my estimates to be?
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Estimation
Notice that our estimate of p is the sample mean of x1, xa, . .., Ty,.

Let's go back to our oracle of tweet to do a thought experiment and
replicate how we derived our estimate from 100 tweets a few thousand

times.
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Estimation

Distribution of p estimates from 100 tweets
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Estimation

What does this say about our estimates of the proportion of bot-
generated tweets if we use 100 tweets in our sample?

Now what if instead of sampling n = 100 tweets we used other sample
Sizes?
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Estimation
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Estimation
We can make a couple of observations:

1. The distribution of estimate p is centered at p = .7, our unknown
population proportion, and

2. The spread of the distribution decreases as the number of samples n
Increases.
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Estimation
This was a simulation, we faked the data generating procedure.

In reality, we can't.
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Estimation

This was a simulation, we faked the data generating procedure.
In reality, we can't.

What to do we do then?

(1) Math, or
(2) Resample
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Solve with Math

Our simulation is an illustration of two central tenets of statistics:

(a) The law of large numbers (LLN)
(b) The central limit theorem (CLT)
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Solve with Math

Law of large numbers (LLN)

Given independently sampled random variables X1, X, - - -, X, with
E|[X;] = u forall 4,

1
—E X, = W, asn — 00
n “

1

|.E. x tends to the expected value p (under some assumptions beyond
the scope of this class) regardless of the distribution .X;.
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Solve with Math
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Solve with Math

Central Limit Theorem (CLT)

The LLN says that estimates built using the sample mean will tend to the
correct answer

The CLT describes how these estimates are spread around the correct
answer.

39/67



Solve with Math

Here we will use the concept of variance which is expected spread,
measured in squared distance, from the expected value of a random
variable:

var[X] = E[(X — E[X])’]
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Solve with Math
var|X| = Z(i’? —E[X])’p(X = =)

’x (1—p)+(1—p)?xp

IS
|
S
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Solve with Math

1
P<_2Xi> %N(,u,g), as n — o0
n ‘= n
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Solve with Math

This says, that as sample size n increases, the distribution of sample
means is well approximated by a normal distribution.

This means we can approximate the expected error of our estimates
well.
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(Continuous) Random Variables
The normal distribution
Random variable Y = >"" | X is continuous.

The normal distribution describes the distribution of continuous random
variables over the range (—oo, 00) using two parameters:

mean L and standard deviation o.
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(Continuous) Random Variables
The normal distribution
Random variable Y = >"" | X is continuous.

The normal distribution describes the distribution of continuous random
variables over the range (—oo, 00) using two parameters:

mean L and standard deviation o.

We write " Y is normally distributed with mean p and standard deviation
c"asY ~ N(u,o).
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(Continuous) Random Variables

Continuous random variables are described by a probability density
function. For normally distributed random variables:

p(Y =y) = \/;—mexp{; <yau)2}
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(Continuous) Random Variables

Three examples of normal probability density functions with mean
© = 60, 50, 60 and standard deviation o = 2, 2, 6:

0.20

—— mean 60, sd 2
— mean 50, 5d 2
mean 60, sd 6

010 0.15

density

0.05

0.00

| | |
50 60 70

y 46 / 67
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(Continuous) Random Variables

Like the discrete case, probability density functions for continuous
random variables need to satisfy certain conditions:

a. p(Y y) > 0 for all values Y € (—o00, 00), and
b. f y)dy = 1
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(Continuous) Random Variables

One way of interpreting the density function of the normal distribution is
that probability decays exponentially with rate o based on squared
distance to the mean u. (Here is squared distance again!)

p(Y=y) \propto \exp \left{ -{\frac{1}{2\sigma”2} (y-\mu)"2} \right }
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(Continuous) Random Variables

Also, notice the term inside the square?

= (%5*)

this Is the standardization transformation we saw before.
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(Continuous) Random Variables

The name standardization comes from the standard normal distribution
N(0,1) (mean 0 and standard deviation 1),

Which is very convenient to work with because it's density function is
much simpler:

p(Z=2)= \/12_7Texp {—%;ﬂ}
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(Continuous) Random Variables

The name standardization comes from the standard normal distribution
N(0,1) (mean 0 and standard deviation 1),

Which is very convenient to work with because it's density function is
much simpler:

p(Z=2)= \/12_7Texp {—%;ﬂ}

In fact, if random variable Y ~ N (u, o) then random variable
Z = £ ~ N(0,1).
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(Continuous) Random Variables

One more technicality:

The cumulative probability function for continuous random variables is
given by

P(Y <y) = /DP(Y = y)dy

where D is the range of values random variable Y can take (e.g., for
normal distribution D = (—o0, o0))
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Solve with Math

CLT continued
We need one last bit of terminology to finish the statement of the CLT.

Consider data X1, X3, - - -, X, with E| X;| =  for all ¢, and
var(X;) = o forall 4,

and sample mean Y = = > X;.

The standard deviation of Y is called the standard error-
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Solve with Math

Now we can restate the CLT statement precisely:

the distribution of Y tends towards N ( ) as n — oQ.

e
This says, that as sample size increases the distribution of sample

means is well approximated by a normal distribution,

and that the spread of the distribution goes to zero at the rate \/ﬁ
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Solve with Math

Disclaimer There a few mathematical subtleties. Two important ones are
that

a. X1,...,X, areiid (independent, identically distributed) random
variables, and
b. var| X| < o
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Solve with Math

Let's redo our simulated replications of our tweet samples to illustrate the

CLT at work:
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Solve with Math

Here we see the three main points of the LLN and CLT:

(1) the normal density is centered around p = .7,
(2) the normal approximation gets better as n increases, and
(3) the standard error goes to O as n increases.
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Solve with computation

The Bootstrap Procedure
What if the conditions that we used for the CLT don't hold?

For instance, samples X; may not be independent. What can we do
then, how can we say something about the precision of sample mean
estimate Y?
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Solve with computation
The Bootstrap Procedure

A useful procedure to use in this case is the bootstrap.

It is based on using randomization to simulate the stochasticity resulting
from the population sampling procedure we are trying to capture in our
analysis.
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Solve with computation

The Bootstrap Procedure

The main idea is the following: given observations 1, ..., xy,
and the estimate y = = > " ;,

what can we say about the standard error of y?
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Solve with computation
The Bootstrap Procedure

There are two challenges here:

1) our estimation procedure is deterministic, that is, if | compute the
sample mean of a specific dataset, | will always get the same answer;
and

2) we should retain whatever properties of estimate y result from
obtaining it from n samples.
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Solve with computation
The Bootstrap Procedure

The bootstrap is a randomization procedure that measures the variance
of estimate v,

using randomization to address challenge (1),

but doing so with randomized samples of size n, addressing challenge

(2).
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Solve with computation
The Bootstrap Procedure

The procedure goes as follows:

1. Generate B random datasets by sampling with replacement from
dataset 1, ..., T,. Denote randomized dataset b as x1p, . . . , Tpp.

2. Construct estimates from each dataset, y, = % > Tib

3. Compute center (mean) and spread (variance) of estimates y
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Solve with computation

The Bootstrap Procedure

Let's see how this works on tweet oracle example

Histogram of bootstrap estimates
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Solve with computation
The Bootstrap Procedure

Not great, math works better when conditions are met.
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Solve with computation
The Bootstrap Procedure

Let's look at a case where we don't expect the normal approximation to
not work so well by making samples not identically distributed.

Let's make a new ORACLE of tweet where the probability of a tweet
being bot-generated depends on the previous tweet
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Solve with computation

The Bootstrap Procedure

Histogram of bootstrap estimates
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Solve with computation
The Bootstrap Procedure

Here, an analysis based on the classical CLT is not appropriate ( X; s
are not independent)

But the bootstrap analysis gives some information about the variability of
our estimates.
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