
Solving linear problems
How to fit the type of analysis methods we've seen so far?

We will use linear regression as a case study of how this insight would
work.

1 / 34

Solving linear problems

Case Study

Given: Training set , with continuous response
 and single predictor for the -th observation.

Do: Estimate parameter in model to solve

{(x1, y1), … , (xn, yn)}
yi xi i

β1 y = β1x

min
β1

L(β1) =
n

∑
i=1

(yi − β1xi)21
2

2 / 34

Solving linear problems
And suppose we want to fit this model to the following (simulated) data:

3 / 34

Solving linear problems
Our goal is then to find the value of that minimizes mean squared
error. This corresponds to finding one of these many possible lines:

β1

4 / 34

Solving linear problems
Each of which has a specific error for this dataset:

5 / 34

Solving linear problems
1) As we saw before in class, loss is minimized when the derivative of
the loss function is 0

2) and, the derivative of the loss (with respect to) at a given estimate
 suggests new values of with smaller loss!

β1

β1 β1

6 / 34

Solving linear problems
Let's take a look at the derivative:

L(β1) =
n

∑
i=1

(yi − β1xi)2

=
n

∑
i=1

(yi − β1xi) (yi − β1xi)

=
n

∑
i=1

(yi − β1xi)(−xi)

∂
∂β1

∂
∂β1

1
2

∂
∂β1

7 / 34

Solving linear problems
and plot it for our case study data:

8 / 34

Solving linear problems

Gradient Descent

This plot suggests an algorithm:

1. Initialize
2. Repeat for until convergence

Set

Note:

β0
1 = 0
k = 1, 2, …

βk
1 = βk−1

1 + α∑
n

i=1(yi − f(xi; βk−1
1))xi

f(xi; β1) = β1xi

9 / 34

Solving linear problems
This algorithm is called gradient descent in the general case.

The basic idea is to move the current estimate of in the direction that
minimizes loss the fastest.

Another way of calling this algorithm is Steepest Descent.

β1

10 / 34

Solving linear problems
Let's run this algorithm and track what it does:

11 / 34

Solving linear problems
This algorithm is referred to as "Batch" gradient descent,

we take a step (update) by calculating derivative with respect to all
observations in our dataset.

β1 n

12 / 34

Solving linear problems
For clarity, let's write out the update equation again:

where .

βk
1 = βk−1

1 + α

n

∑
i=1

(yi − f(xi; βk−1
1))xi

f(xi; β1) = β1xi

13 / 34

Solving linear problems
For multiple predictors (e.g., adding an intercept), this generalizes to the
gradient i.e., the vector of first derivatives of loss with respect to
parameters.

In this case, the model sets

Note: we take

f(xi; β) = β0 + β1xi1 + ⋯ + βpxip

= ∑
p

j=0 βjxij

= β ′x

xi0 = 1
14 / 34

Solving linear problems
The gradient given by partial derivatives for each parameter

∇βL(β) =

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

⋮

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

∂L(β)
∂β0

∂L(β)
∂β1

∂L(β)
∂βp

15 / 34

Solving linear problems
The update equation is exactly the same for least squares regression

where

Note:

βk = βk−1 + α

n

∑
i=1

(yi − f(xi; βk−1))xi

f(xi; β) = β ′
xi

xi0 = 1

16 / 34

Solving linear problems
Gradient descent falls within a family of optimization methods called first-
order methods

These methods have properties amenable to use with very large
datasets:

1. Inexpensive updates
2. "Stochastic" version can converge with few sweeps of the data
3. "Stochastic" version easily extended to streams
4. Easily parallelizable

Drawback: Can take many steps before converging
17 / 34

Solving linear problems

Logistic Regression

Gradient descent is also used to solve the logistic regression problem.
The same procedure follows

(1) define a loss function;
(2) derive the update equation;
(3) run the iterative gradient descent algorithm.

18 / 34

Solving linear problems
Let's take a look at the first two steps in this case.

For logistic regression, we turn to maximum likelihood to formulate a loss
function.

For the logistic regression problem we are given dataset
, where outcomes since we are

learning a binary classification problem.
{⟨x1, y1⟩, … , ⟨xn, yn⟩} yi ∈ {0, 1}

19 / 34

Solving linear problems
The goal is to estimate parameters in model

Note:

β

log = β0 + β0x1 + ⋯ + βpxp

= β ′
x

p(Y =1|X=x)
1−p(Y =1|X=x)

xi0 = 1

20 / 34

Solving linear problems
To establish a loss function we first assume a model for data generation.
The assumption we make here is if an entity has attribute values , then
the outcome with probability given by

Note that we use the same notation as we did in linear
regression.

x

Y = 1

p(x; β) =
ef(x;β)

1 + ef(x;β)

f(x; β) = β ′
x

21 / 34

Solving linear problems
Now, we can ask, what is the probability of the data we observe for entity
 under this model? We can write this probability in this form:i

p(xi; β)yi(1 − p(xi; β))(1−yi)

22 / 34

Solving linear problems
Now, we can put these together for all observed entities since we
assume that these are generated independently to get a likelihood
function:

L(β) =
n

∏
i=1

pi(xi; β)yi(1 − pi(xi; β))(1−yi)

23 / 34

Solving linear problems
Now, we need to turn this into a loss function we can minimize.

The likelihood function we wrote down is one we would maximize.

Also, it is usually more convenient to work with the logarithm of
likelihoods.

24 / 34

Solving linear problems
The loss function we use for gradient descent is the negative log
likelihood

L(β) =
n

∑
i=1

−yif(xi; β) + log(1 + ef(xi;β))

25 / 34

Solving linear problems
So, now that we have a loss function, we need to derive it's gradient to
use the gradient descent algorithm. Check the lecture notes.

∇βL(β) =
n

∑
i=1

(p(xi; β) − yi)xi

26 / 34

Solving linear problems
Note the nice similarity to the gradient for linear regression.

It multiplies each data (expanded) data vector by the difference
between a prediction, in this case the probability that the outcome

 and the observed outcome .

xi

yi = 1 yi

27 / 34

Stochastic gradient descent
Key Idea: Update parameters using update equation one observation at
a time:

1. Initialize ,
2. Repeat until convergence

For to
Set

β = 0 i = 1

i = 1 n

β = β + α(yi − f(xi, β))xi

28 / 34

Stochastic gradient descent
Let's run this and see what it does:

29 / 34

Stochastic gradient descent
The stochastic gradient descent algorithm can easily adapt to data
streams where we receive observations one at a time and assume they
are not stored.

This setting falls in the general category of online learning.

30 / 34

Stochastic gradient descent

Parallelizing gradient descent
Gradient descent algorithms are easily parallelizable:

Split observations across computing units
For each step, compute partial sum for each partition (map), compute
final update (reduce)

31 / 34

Stochastic gradient descent

βk = βk−1 + α ∗ ∑
partition P

∑
i∈P

(yi − f(xi; βk−1))xi

32 / 34

Stochastic gradient descent
This observation has resulted in their implementation if systems for
large-scale learning:

1. Vowpal Wabbit
Implements general framework of (sparse) stochastic gradient
descent for many optimization problems
R interface: [http://cran.r-
project.org/web/packages/RVowpalWabbit/index.html]

33 / 34

Stochastic gradient descent
This observation has resulted in their implementation if systems for
large-scale learning:

1. Spark MLlib
Implements many learning algorithms using Spark framework we
saw previously
Some access to the MLlib API via R, but built on primitives
accessible through SparkR library we saw previously

34 / 34

Introduction to Data Science: Solving
Linear Problems
Héctor Corrada Bravo

University of Maryland, College Park, USA
2020-04-12

https://github.com/JohnLangford/vowpal_wabbit/wiki
http://cran.r-project.org/web/packages/RVowpalWabbit/index.html
https://spark.apache.org/docs/1.2.1/mllib-guide.html

Solving linear problems
How to fit the type of analysis methods we've seen so far?

We will use linear regression as a case study of how this insight would
work.

1 / 34

Solving linear problems

Case Study

Given: Training set , with continuous response
 and single predictor for the -th observation.

Do: Estimate parameter in model to solve

{(x1, y1), … , (xn, yn)}

yi xi i

β1 y = β1x

min
β1

L(β1) =
n

∑
i=1

(yi − β1xi)
21

2

2 / 34

Solving linear problems
And suppose we want to fit this model to the following (simulated) data:

3 / 34

Solving linear problems
Our goal is then to find the value of that minimizes mean squared
error. This corresponds to finding one of these many possible lines:

β1

4 / 34

Solving linear problems
Each of which has a specific error for this dataset:

5 / 34

Solving linear problems
1) As we saw before in class, loss is minimized when the derivative of
the loss function is 0

2) and, the derivative of the loss (with respect to) at a given estimate
 suggests new values of with smaller loss!

β1

β1 β1

6 / 34

Solving linear problems
Let's take a look at the derivative:

L(β1) =
n

∑
i=1

(yi − β1xi)
2

=
n

∑
i=1

(yi − β1xi) (yi − β1xi)

=
n

∑
i=1

(yi − β1xi)(−xi)

∂

∂β1

∂

∂β1

1

2

∂

∂β1

7 / 34

Solving linear problems
and plot it for our case study data:

8 / 34

Solving linear problems

Gradient Descent

This plot suggests an algorithm:

1. Initialize
2. Repeat for until convergence

Set

Note:

β0
1 = 0

k = 1, 2, …

βk
1 = βk−1

1 + α∑
n

i=1(yi − f(xi; βk−1
1))xi

f(xi; β1) = β1xi

9 / 34

Solving linear problems
This algorithm is called gradient descent in the general case.

The basic idea is to move the current estimate of in the direction that
minimizes loss the fastest.

Another way of calling this algorithm is Steepest Descent.

β1

10 / 34

Solving linear problems
Let's run this algorithm and track what it does:

11 / 34

Solving linear problems
This algorithm is referred to as "Batch" gradient descent,

we take a step (update) by calculating derivative with respect to all
observations in our dataset.

β1 n

12 / 34

Solving linear problems
For clarity, let's write out the update equation again:

where .

βk
1 = βk−1

1 + α

n

∑
i=1

(yi − f(xi; βk−1
1))xi

f(xi; β1) = β1xi

13 / 34

Solving linear problems
For multiple predictors (e.g., adding an intercept), this generalizes to the
gradient i.e., the vector of first derivatives of loss with respect to
parameters.

In this case, the model sets

Note: we take

f(xi; β) = β0 + β1xi1 + ⋯ + βpxip

= ∑
p

j=0 βjxij

= β ′x

xi0 = 1

14 / 34

Solving linear problems
The gradient given by partial derivatives for each parameter

∇βL(β) =

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

⋮

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

∂L(β)
∂β0

∂L(β)
∂β1

∂L(β)
∂βp

15 / 34

Solving linear problems
The update equation is exactly the same for least squares regression

where

Note:

βk = βk−1 + α

n

∑
i=1

(yi − f(xi; βk−1))xi

f(xi; β) = β ′
xi

xi0 = 1

16 / 34

Solving linear problems
Gradient descent falls within a family of optimization methods called first-
order methods

These methods have properties amenable to use with very large
datasets:

1. Inexpensive updates
2. "Stochastic" version can converge with few sweeps of the data
3. "Stochastic" version easily extended to streams
4. Easily parallelizable

Drawback: Can take many steps before converging
17 / 34

Solving linear problems

Logistic Regression

Gradient descent is also used to solve the logistic regression problem.
The same procedure follows

(1) define a loss function;
(2) derive the update equation;
(3) run the iterative gradient descent algorithm.

18 / 34

Solving linear problems
Let's take a look at the first two steps in this case.

For logistic regression, we turn to maximum likelihood to formulate a loss
function.

For the logistic regression problem we are given dataset
, where outcomes since we are

learning a binary classification problem.
{⟨x1, y1⟩, … , ⟨xn, yn⟩} yi ∈ {0, 1}

19 / 34

Solving linear problems
The goal is to estimate parameters in model

Note:

β

log = β0 + β0x1 + ⋯ + βpxp

= β ′
x

p(Y =1|X=x)

1−p(Y =1|X=x)

xi0 = 1

20 / 34

Solving linear problems
To establish a loss function we first assume a model for data generation.
The assumption we make here is if an entity has attribute values , then
the outcome with probability given by

Note that we use the same notation as we did in linear
regression.

x

Y = 1

p(x; β) =
ef(x;β)

1 + ef(x;β)

f(x; β) = β ′
x

21 / 34

Solving linear problems
Now, we can ask, what is the probability of the data we observe for entity
 under this model? We can write this probability in this form:i

p(xi; β)yi(1 − p(xi; β))(1−yi)

22 / 34

Solving linear problems
Now, we can put these together for all observed entities since we
assume that these are generated independently to get a likelihood
function:

L(β) =
n

∏
i=1

pi(xi; β)yi(1 − pi(xi; β))(1−yi)

23 / 34

Solving linear problems
Now, we need to turn this into a loss function we can minimize.

The likelihood function we wrote down is one we would maximize.

Also, it is usually more convenient to work with the logarithm of
likelihoods.

24 / 34

Solving linear problems
The loss function we use for gradient descent is the negative log
likelihood

L(β) =
n

∑
i=1

−yif(xi; β) + log(1 + ef(xi;β))

25 / 34

Solving linear problems
So, now that we have a loss function, we need to derive it's gradient to
use the gradient descent algorithm. Check the lecture notes.

∇βL(β) =
n

∑
i=1

(p(xi; β) − yi)xi

26 / 34

Solving linear problems
Note the nice similarity to the gradient for linear regression.

It multiplies each data (expanded) data vector by the difference
between a prediction, in this case the probability that the outcome

 and the observed outcome .

xi

yi = 1 yi

27 / 34

Stochastic gradient descent
Key Idea: Update parameters using update equation one observation at
a time:

1. Initialize ,
2. Repeat until convergence

For to
Set

β = 0 i = 1

i = 1 n

β = β + α(yi − f(xi, β))xi

28 / 34

Stochastic gradient descent
Let's run this and see what it does:

29 / 34

Stochastic gradient descent
The stochastic gradient descent algorithm can easily adapt to data
streams where we receive observations one at a time and assume they
are not stored.

This setting falls in the general category of online learning.

30 / 34

Stochastic gradient descent

Parallelizing gradient descent
Gradient descent algorithms are easily parallelizable:

Split observations across computing units
For each step, compute partial sum for each partition (map), compute
final update (reduce)

31 / 34

Stochastic gradient descent

βk = βk−1 + α ∗ ∑
partition P

∑
i∈P

(yi − f(xi; βk−1))xi

32 / 34

Stochastic gradient descent
This observation has resulted in their implementation if systems for
large-scale learning:

1. Vowpal Wabbit
Implements general framework of (sparse) stochastic gradient
descent for many optimization problems
R interface: [http://cran.r-
project.org/web/packages/RVowpalWabbit/index.html]

33 / 34

https://github.com/JohnLangford/vowpal_wabbit/wiki
http://cran.r-project.org/web/packages/RVowpalWabbit/index.html

Stochastic gradient descent
This observation has resulted in their implementation if systems for
large-scale learning:

1. Spark MLlib
Implements many learning algorithms using Spark framework we
saw previously
Some access to the MLlib API via R, but built on primitives
accessible through SparkR library we saw previously

34 / 34

https://spark.apache.org/docs/1.2.1/mllib-guide.html

