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Overview

Principles of preparing and organizing data in a way that is amenable for
analysis.

Data representation model: collection of concepts that describes how
data is represented and accessed.

Thinking abstractly of data structure, beyond a specific implementation,
makes it easier to share data across programs and systems, and
Integrate data from different sources.

1/74



Overview

e Structure: We have assumed that data is organized in rectangular
data structures (tables with rows and columns)

e Semantics: We have discussed the notion of values, attributes, and
entities.
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Overview

e Structure: We have assumed that data is organized in rectangular
data structures (tables with rows and columns)

e Semantics: We have discussed the notion of values, attributes, and
entities.

So far, data semantics. a dataset is a collection of values, numeric or
categorical, organized into entities (observations) and attributes
(variables).

Each attribute contains values of a specific measurement across entities,
and entities collect all measurements across attributes.
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Overview

In the database literature, we call this exercise of defining structure and
semantics as data modeling.
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Overview

In the database literature, we call this exercise of defining structure and
semantics as data modeling.

In this course we use the term data representational modeling, to
distinguish from data statistical modeling.
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Data representational modeling

e Data model: A collection of concepts that describes how data is

represented and accessed
e« Schema: A description of a specific collection of data, using a given

data model
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Data representational modeling

e Modeling Constructs: A collection of concepts used to represent the
structure in the data.

Typically we need to represent types of entities, their attributes, types of
relationships between entities, and relationship attributes
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Data representational modeling

e Integrity Constraints: Constraints to ensure data integrity (i.e., avoid
errors)
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Data representational modeling

e Integrity Constraints: Constraints to ensure data integrity (i.e., avoid
errors)

e Manipulation Languages: Constructs for manipulating the data
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Data representational modeling
We desire that models are:

» sufficiently expressive so they can capture real-world data well,

e easy to use,

e lend themselves to defining computational methods that have good
performance.
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Data representational modeling

Some examples of data models are

e Relational, Entity-relationship model, XML...
e Object-oriented, Object-relational, RDF...
e Current favorites in the industry: JSON, Protocol Buffers, Avro, Thrift,

Property Graph
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Data representational modeling

e Data independence: The idea that you can change the
representation of data w/o changing programs that operate onit.

e Physical data independence: | can change the layout of data on
disk and my programs won't change

o index the data

o partition/distribute/replicate the data
o compress the data

sort the data

@)
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The Entity-Relationship and Relational Models

Modeling constructs: @

e entities and their attributes :mduct Company

e relationships and relationship What d

attributes. 0 this say?

Person
Entities are objects represented in a

dataset: people, places, things, etc. .. Crame ) (s )

Relationships model just that,
relationships between entities.
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The Entity-Relationship and Relational Models

Diagrams: @

e rectangles are entitites —_ Company

e diamonds and edges indicate What does

relationships o this say?

e Circles describe either entity or Person

relationship attributes.
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The Entity-Relationship and Relational Models

Arrows are used indicate multiplicity

of relationships

One-to-one: 6‘9 —>’<—

Many-to-one:

One-to-many:

Many-to-many:

W
STt

[Chris Re]
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The Entity-Relationship and Relational Models

Relationships are defined over pairs of entities.

Relationship R over sets of entities £1 and E5 is defined over the
cartesian product E-; X Es.

For example: if e; € E7 and es € Es, then (e1,e3) € R.
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The Entity-Relationship and Relational Models
Arrows specify how entities participate in relationships.

For example: this diagram specifies that entities in ££; appear in only one

relationship pair.

Thatis, ife; € E1, e; € Ep and (e;, e;) € R, then there is no other pair

(ez-, Bk) c R.

E1

H‘

E2
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The Entity-Relationship and Relational Models

In databases and general datasets we work on, both Entities and
Relationships are represented as Relations (tables).

15/74



The Entity-Relationship and Relational Models

In databases and general datasets we work on, both Entities and
Relationships are represented as Relations (tables).

Such that a unique entity/relationship is represented by a single tuple
(the list of attribute values that represent an entity or relationship).

15/74



The Entity-Relationship and Relational Models

In databases and general datasets we work on, both Entities and
Relationships are represented as Relations (tables).

Such that a unique entity/relationship is represented by a single tuple
(the list of attribute values that represent an entity or relationship).

How can we ensure unigueness of entities?

15/74



The Entity-Relationship and Relational Models

In databases and general datasets we work on, both Entities and
Relationships are represented as Relations (tables).

Such that a unique entity/relationship is represented by a single tuple
(the list of attribute values that represent an entity or relationship).

How can we ensure unigueness of entities?

keys are an essential ingredient to uniquely identify entities and
relationships in tables.
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Formal introduction to keys

e Attribute set K is a superkey of relation R if values for K are
sufficient to identify a unique tuple of each possible relation r( R)
o Example: {SSN} and {SSN,name} are both superkeys of person
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Formal introduction to keys

e Attribute set K is a superkey of relation R if values for K are
sufficient to identify a unique tuple of each possible relation r( R)
o Example: {SSN} and {SSN,name} are both superkeys of person

e Superkey K is a candidate key if K is minimal
o Example: {SSN} is a candidate key for person
e One of the candidate keys is selected to be the primary key

o Typically one that is small and immutable (doesn’t change often)
o Primary key typically highlighted in ER diagram
16 /74



Formal introduction to keys

* Foreign key: Primary key of a relation that appears in another
relation
o {SSN} from person appears in employs
o person called referenced relation
o employs is the referencing relation
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Formal introduction to keys

* Foreign key: Primary key of a relation that appears in another
relation
o {SSN} from person appears in employs
o person called referenced relation
o employs is the referencing relation

e Foreign key constraint: the tuple corresponding to that primary key
must exist
o Imagine:
= Tuple: ('123-45-6789"', 'Apple')in employs
= But no tuple corresponding to '123-45-6789' in person
o Also called referential integrity constraint 17774



Tidy Data

We use the term Tidy Data to refer to datasets that are represented in a
form that is amenable for manipulation and statistical modeling.

It is very closely related to the concept of normal forms in the ER model
and the process of normalization in the database literature.
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Tidy Data

Here we assume we are working in the ER data model represented as
relations. rectangular data structures where

1. Each attribute (or variable) forms a column
2. Each entity (or observation) forms a row
3. Each type of entity (observational unit) forms a table
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Tidy Data

Here is an example of a tidy dataset: One entity per row, a single
attribute per column. Only information about flights included.

year month day dep_time sched_dep_time dep_delay arr_time sched_arr

2013 1 1 517 915 2 830

2013 1 1 533 529 4 850
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Structure Query Language

The Structured-Query-Language (SQL) is the predominant language
used in database systems.

It is tailored to the Relational data representation model.

SQL is a declarative language, we don't write a procedure to compute a
relation, we declare what the relation we want to compute looks like.
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Structure Query Language

The basic construct in SQL is the so-called SFW construct: select-from-
where which specifies:

e select. which attributes you want the answer to have

e from: which relation (table) you want the answer to be computed from

e where:. what conditions you want to be satisfied by the rows (tuples)
of the answer
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Structure Query Language

E.g.: movies produced by Disney in 1990: note the rename

select m.title, m.year
from movie m

where m.studioname = 'disney' and m.year = 1990
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Structure Query Language

The select clause can contain expressions (this is paralleled by the
mutate operation we saw previously)

e select title || ' (' || to_char(year) || ")' as
titleyear
e select 2014 - year
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Structure Query Language

The where clause support a large number of different predicates and
combinations thereof (this is parallel to the f1 lter operation)

e year between 1990 and 1995
e title like 'star wars%' title like 'star wars _'
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Structure Query Language

We can include ordering, e.g., find distinct movies sorted by title

select distinct title
from movie
where studioname = 'disney' and year = 1990

order by title;
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Structure Query Language
Group-by and summarize

SQL has an idiom for grouping and summarizing

E.g., compute the average movie length by year

select name, avg(length)
from movie

group by year
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Two-table operations

So far we have looked at data operations defined over single tables and
data frames.

In this section we look at efficient methods to combine data from multiple
tables.

The fundamental operation here is the jo1in, which is a workhorse of
database system design and impementation.
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Two-table operations
The join operation:
Combines rows from two tables to create a new single table

Based on matching criteria specified over attributes of each of the two
tables.
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Two-table operations

Consider a database of flights and airlines:

flights

## # A tibble:

##

##

##

##

##

##

##

year month

<int> <int>

2013

2013

2013

2013

2013

1

1

336,776 x 19

day dep_time sched_dep_time dep_delay arr_time

<int>

1

1

<int>

517

533

542

544

554

<int>

515

529

540

545

600

<dbl>

2

4

<int>

830

850

923

1004

812
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Two-table operations

airlines

## # A tibble:

##

##

##

##

##

##

##

##

H#

16 x 2

carrier name

<chr>

9E

AA

AS

B6

DL

EV

Fo

<chr>

Endeavor Air Inc.
American Airlines Inc.
Alaska Airlines Inc.
JetBlue Airways

Delta Air Lines Inc.

ExpressJet Airlines Inc.

Frontier Airlines Inc.
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Two-table operations
Here, we want to add airline information to each flight.

Join the attributes of the respective airline from the airlines table with
the flights table based on the values of attributes flightsS$carrier
and airlinesS$Scarrier.
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Two-table operations

Every row of flights with a specific value for flightsS$Scarrier,is
joined with the the corresponding row in airlines with the same value
forairlinesScarrier.
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Two-table operations

There are multiple ways of performing this operation that differ on how
non-matching observations are handled.
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Two-table operations

Left Join

Ina left join, all observations on left operand (LHS) are retained:

= )
1] a2 | 1] x3 |
A 1 --
]
gla: " R —
cC 3 DT

x1 | x2_

A 1
B 2
e 3

=7
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Two-table operations
Other operations:
* right join: all observations in RHS are retained
o outer join: all observations are retained (full join)
e /nner join. only matching observations are retained

Detalls in lecture notes
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Two-table operations

Join conditions

All join operations are based on a matching condition:

flights %>%

inner_join(airlines, by="carrier")

specifies to join observations where flights$Scarrier equals
airlinesScarrier.
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Two-table operations
In this case, where no conditions are specified using the by argument:

flights %>%

left_join(airlines)

a natural join is perfomed. In this case all variables with the same name
In both tables are used in join condition.
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Two-table operations

You can also specify join conditions on arbitrary attributes using the by
argument.

flights %>%

left_join(airlines, by=c("carrier" = "name"))
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Two-table operations

SQL Constructs: Multi-table Queries
Key idea:

e Do a join to combine multiple tables into an appropriate table
e Use SFW constructs for single-table queries
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Two-table operations

SQL Constructs: Multi-table Queries
Key idea:

e Do a join to combine multiple tables into an appropriate table
e Use SFW constructs for single-table queries

For the first part, where we use a join to get an appropriate table, the
general SQL construct includes:

e The name of the first table to join
e The type of join to do
e The name of the second table to join 40/ 74



Two-table operations

select title, year, me.name as producerName
from movies m join movieexec me

where m.producer = me.id;

41174



Entity Resolution and Record Linkage
Often, we will be faced with the problem of data integration:
e combine two (or more) datasets from different sources

e that may contain information about the same entities.

42 | 74



Entity Resolution and Record Linkage
Often, we will be faced with the problem of data integration:
e combine two (or more) datasets from different sources

e that may contain information about the same entities.

But,... the attributes in the two datasets may not be the same,

42 | 74



Entity Resolution and Record Linkage
Often, we will be faced with the problem of data integration:
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Entity Resolution and Record Linkage

Person

People
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Entity Resolution and Record Linkage

Person People

<John, Katz> <Johnathan, Katz>
<dJohnathan, Kats>
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Entity Resolution and Record Linkage

These are examples of a general problem referred to as Entity
Resolution and Record Linkage.
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Entity Resolution and Record Linkage

Problem Definition

Given: Entity sets F; and E»,

Find: Linked entities (e1, e2) withe; € E7 and eg € Ebs.
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Entity Resolution and Record Linkage
One approach: similarity function

e Define a similarity function between entities e; and es

e Link entities with high similarity.
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Entity Resolution and Record Linkage

Define similarity as an additive function over some set of shared
attributes A:

s(e,e2) = Y sj(eals]; eals])

jeA

with s; a similarity function defined for each attribute 7,

A7 174



Entity Resolution and Record Linkage

Example attribute functions

Categorical attribute: pairs of entities with the same value are more
similar to each other than pairs of entities with different values. E.g.,

1 if e1[j] == ea]]
0 o.w.

sialieli) = {
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Entity Resolution and Record Linkage
Example aftribute functions

Continuous attribute: pairs of entities with values that are close to each
other are more similar than pairs of entities with values that are fartherto
each other.

Note that to specify close or far we need to introduce some notion of
distance. We can use Euclidean distance for example,

dj(e1]j], e2l5]) = (ex[d] — e2[4])?; sj(enld], ezls]) = e~ %lerliheli)
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Entity Resolution and Record Linkage

Example attribute functions

Text attributes: based on edit distance between strings rather than
Euclidean distance. We can use domain knowledge to specify similarity.

For example, fact that John and Johnathan are similar requires domain
knowledge of common usage of English names.
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Solving the resolution problem
Need a rule to match entities we think are linked.

This depends on assumptions we make about the dataset, similar to
assumptions we made when performing joins.
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Solving the resolution problem
Model the entity resolution problem as an optimization problem:
maximize objective function (based on similarity)

over possible sets V' of valid pairs (e1, e2), where set V' constraints
pairs based on problem-specific assumptions.
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Solving the resolution problem
Many-to-one resolutions

Constrain sets V' to represent many-to-one resolutions.

Thus, entities in e; can only appear once in pairs in V/, but entities es
may appear more than once.

In this case, we can match (e, e3) where

es = argmax s(ey, e)
eck,
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Solving the resolution problem
One-to-one resolutions

Suppose we constrain sets V' to those that represent one-to-one
resolutions:

If (e1,e2) € V then ey and ey appear in only one pairin V.

In this case, we have a harder computational problem. In fact, this is an
Instance of the maximum bipartite matching problem, and would look at
network flow algorithms to solve.
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Solving the resolution problem

Other constraints

We can add additional constraints to V' to represent other information we
have about the task.

A common one would be to only allow pairs (e1, e2) € V to have
similarity above some threshold t. l.e., (e1,e2) € V only if
s(e,es) > t.
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Solving the resolution problem

Discussion

The procedure outlined above is an excellent first attempt to solve the
Entity Resolution problem.

This is a classical problem in Data Science for which a variety of
approaches and methods are in use.
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Database Query Optimization

Earlier we made the distinction that SQL is a declarative language rather

than a procedural language.

A reason why data base systems rely on a declarative language is that it
allows the system to decide how to evaluate a query most efficiently.
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Database Query Optimization

Consider a Baseball database where we have two tables Batting and
Master

what is the maximum batting "average" for a player from the state of
California®?

select max(1.0 *x b.H / b.AB) as best_ba
from Batting as b join Master as m on b.playerId = m.playerId

where b.AB >= 100 and m.birthState = "CA"
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Database Query Optimization
Now, let's do the same computation using dplyr operations:

Version 1;

Batting %>%
inner_join(Master, by="playerID") %>%
filter (AB >= 100, birthState == "CA") %>%
mutate(AB=1.0 * H / AB) %>%

summarize(max (AB))

## max (AB)

## 1 0.4057018 59 /74



Database Query Optimization

Version 2:

Batting %>%
filter (AB >= 100) %>%
inner_join(
filter (Master, birthState == "CA")) %>%
mutate(AB = 1.0 *x H / AB) %>%

summarize(max (AB))

# max (AB)

## 1 0.4057018
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Database Query Optimization

Which should be most efficient? Think about a simple cost model. The
costliest operation here is the join between two tables.

function INNERJOIN(T'1,772, A)
R« ()
for all row r1 € T'1 do
for all row r2 € T2 do
if r1[A] == r2[A]| then R < (r1,72) R
end if
end for
end for

return R
end function 61/74



Database Query Optimization
What is the cost of this algorithm? |T'1| x |T'2|.

For the rest of the operations, let's assume we perform this with a single
pass through the table.

For example, we assume that filter (T) has cost |T'|.
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Database Query Optimization

Let's write out the cost of each of the two pipelines.

Batting %>%
inner_join(Master, by="playerID") %>%
filter (AB >= 100, birthState == "CA") %>%
mutate(AB=1.0 * H / AB) %>%

summarize(max (AB))
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Database Query Optimization
Cost of version 1 is
|Batting| x |Master| + |R1| 4 2| R

R1: inner join between Batting and Master R:is R1 filtered to rows
with AB >=100 & birthState == "CA".

In this example: 2.08e+09
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Database Query Optimization

Now, let's look at the second version.

Batting %>%
filter (AB >= 100) %>%
inner_join(
Master %>% filter(birthState == "CA")
) %>%
mutate(AB = 1.0 *x H / AB) %>%

summarize(max (AB))
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Database Query Optimization
Cost of version 2 is |Batting| x |Master| + |B1| x |M1| + 2| R

B1: Batting filtered to include only rows with AB >= 100 M?2:
Master filtered to include
birthState == "CA".

In our example: 8.95e+07
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Database Query Optimization
Version 1 (join tables before filtering) is 23 times costlier.

When using SQL in a database system we only write the one query
describing our desired result,

With the procedural (dplyr) we need to think which of the two versions
IS more efficient.
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Database Query Optimization

Database systems use query optimization to decide how to evaluate
gueries efficiently.

The goal of query optimization is to decide the most efficient query plan
to use to evaluate a query out of the many possible candidate plans it
could use.

It needs to solve two problems: search the space of possible plans,
approximate the cost of evaluating a specific plan.
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Database Query Optimization

Think of the two procedural versions above as two candidate plans that
the DB system could use to evaluate the query.

Query optimzation approximates what it would cost to evaluate each of
the two plans and decides to use the most efficient plan.
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Semi-structured Data Representation Model

The Entity-Relational data model we have described so far is mostly
defined for structured data. where a specific and consistent schema is
assumed.

Data models like XML and JSON are instead intended for semi-
structured data.

70/ 74



Semi-structured Data Representation Model

XML: eXtensible Markup Language

Data models like XML rely on flexible, self-describing schemas:

xml version="1.0" encoding="UTF-8"

<CATALOG>
<CD>
<TITLE>Empire Burlesque</TITLE>
<ARTIST>Bob Dylan</ARTIST>
<COUNTRY>USA</COUNTRY>
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Semi-structured Data Representation Model

JSON: Javascript Object Notation

"firstName": "John",

"lastName": "Smith",

"isAlive": true,

"age": 25,

"height_cm": 167.6,

"address": {
"streetAddress": "21 2nd Street",
"city": "New York",

72174
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Semi-structured Data Representation Model

This is the format most contemporary data REST APIs use to transfer
data. For instance, here is part of a JSON record from a Twitter stream:

"created_at":"Sun May 05 14:01:34+00002013",

"id":331046012875583488,

"id_str'":"331046012875583488",

"text":"\u0425\u043e\ub447\u0443, \u0447\u0442\u043e\u0431 \u0442\ub44b \ubG441\u0434\u0
"source":"\u003ca href=\"http:\/\/twitterfeed.com\"rel=\"nofollow\"\u0G03etwitterfeed\uod
"in_reply_to_user_id_str":null,

"user":{

73174
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Summary
We have looked at specifics of Data Representation Modeling

e Entity Relationship and Relational Models

Definition of Tidy Data

e Joining tables

Entity Resolution

e Models for semi-structured data
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