Introduction to Data Science:
Operations

Héctor Corrada Bravo

University of Maryland, College Park, USA
2020-01-29

ot Bromroamancs & Cosmruranonss Benocr

® MARYLAND

http://r4ds.had.co.nz/program-intro.html

Principles: Basic Operations

Now that we have a data frame describing our data, let's learn a few
fundamental operations we perform on data frames on almost any

analysis.

We divide these first set of operations into two groups:

e operations on attributes
e Qperations on entitites.

1/55

Operations that subset attributes

select

Suppose we only want to study patterns in
these arrests based on a smaller number of
attributes.

In that case we would like to create a data
frame that contains only those attributes of
Interest.

2 155

Operations that subset attributes

Let's create a data frame containing only the age, sex and district
attributes

select(arrest_tab, age, sex, district)

A tibble:

##

##

##

##

##

##

age sex

<db'l>

23

37

46

50

104,528 x 3

district

<chr> <chr>

M

M

M

M

<NA>

SOUTHERN

NORTHEASTERN

WESTERN

3 /55

Operations that subset attributes

We can use an operator to describe ranges. E.g., 1:5 would be

attributes 1 through 5:

select(arrest_tab, 1:5)

A tibble:
arrest
#H <dbl>
1 11126858
2 11127013
3 11126887
4 11126873

104,528 x 5
age race sex
<dbl> <chr> <chr>
23 B M
37 B M
46 B M
50 B M

arrestDate
<chr>

01/01/2011
01/01/2011
01/01/2011

01/01/2011

4 | 55

Operations that subset entities

slice

C T [[T
We can choose specific entities by their row

position. For instance, to choose entities In

rows 1,3 and 10, we would use the
following:

slice(arrest_tab, c(1, 3, 10))

5/55

Operations that subset entities
As before, the first argument is the data frame to operate on.

The second argument is a vector of indices.

We used the c function (for concatenate) to create a vector of indices.

6 /55

Operations that subset entities

We can also use the range operator here:

slice(arrest_tab, 1:5)

##

##

##

##

##

##

##

##

A tibble: 5 x 15
arrest age race
<dbl> <dbl> <chr>
1 1.11e7 23 B
2 1.11e7 37 B
3 1.11e7 46 B
4 1.11e7 50 B
5 1.11e7 33 B

sex

<chr>

arrestDate
<chr>

01/01/2011
01/01/2011
01/01/2011
01/01/2011

01/01/2011

arrestTime arrestLocation

<time>

00'00"

01'00"

01'o0"

04'00"

05'00"

<chr>
<NA>
2000 Wilkens ..
2800 Mayfield..
2100 Ashburto..

4000 Wilsby A..

7155

Operations that subset entities

To create general sequences of indices we would use the seq function.

For example, to select entities in even positions we would use the
following:

slice(arrest_tab, seq(2, nrow(arrest_tab), by=2))

A tibble: 52,264 x 15

arrest age race sex arrestDate arrestTime arrestlLocation
#it <dbl> <dbl> <chr> <chr> <chr> <time> <chr>

1 1.11e7 37 B M 01/01/2011 01'00" 2000 Wilkens ..
2 1l.1lle7 50 B M 01/01/2011 04'00" 2100 Ashburto..

3 1l.1lle7 41 B M 01/01/2011 05'00" 2900 Spellman..

8 /55

Operations that subset entities

filter

We can also select entities based on attribute properties. For example, to
select arrests where age is less than 18 years old, we would use the
following:

filter(arrest_tab, age < 18)

A tibble: 463 x 15

arrest age race sex arrestDate arrestTime arrestLocation
#H <db1l> <dbl> <chr> <chr> <chr> <time> <chr>

#4 1 1.11le7 17 B M 01/03/2011 15:00 <NA> 9 /55

Operations that subset entities

The second argument is an expression that evaluates to a vector of
logical values (TRUE or FALSE), if the expression evaluates to TRUE for
a given entity (row) then that entity (row) is part of the resulting data
frame.

10 /55

Operations that subset entities

Operators used frequently include:

==, I=:tests equality and inequality respectively (categorical, numerical,
datetimes, etc.)
<, >, <=, >=:tests order relationships for ordered data types (not

categorical)
!, &, |: not, and, or, logical operators

11 /55

Operations that subset entities

To select arrests with ages between 18 and 25 we can use
filter (arrest_tab, age >= 18 & age <= 25)

A tibble:

##

##

##

##

##

##

##

arrest

<db1> <db1l> <chr> <chr>

1.11e7

1.11e7

1.11e7

1.11e7

1.11e7

35,770 x 15

age race

23

20

24

25

24

B

W

B

B

B

sex

M

\/

arrestDate
<chr>

01/01/2011
01/01/2011
01/01/2011
01/01/2011

01/01/2011

arrestTime arrestLocation

<time>

00:00

00:05

00:07

00:20

00:40

<chr>

<NA>

5200 Moravia ..

2400 Gainsdbo..

2800 Violet A..

3900 Greenmou..

12 / 55

Operations that subset entities

The filter function can take multiple logical expressions. In this case they

are combined with &. So the above Is equivalent to

filter(arrest_tab, age >= 18, age <= 25)

A tibble:

##

##

##

##

##

##

arrest

<db1> <dbl> <chr> <chr>

1 1.11e7

2 1.11e7

3 1.11e7

4 1.11e7

35,770 x 15

age race

23 B

20 W

24 B

25 B

seXx

\/

M

M

M

arrestDate
<chr>

01/01/2011
01/01/2011
01/01/2011

01/01/2011

arrestTime arrestLocation

<time>

00:00

00:05

00:07

00:20

<chr>

<NA>

5200 Moravia ..

2400 Gainsdbo..

2800 Violet A..

13 /55

Operations that subset entities

sample_nand sample_frac

Frequently we will want to choose entities from a data frame at random.
The sample_n function selects a specific number of entities at random:

sample_n(arrest_tab, 10)

A tibble: 10 x 15

arrest age race sex arrestDate arrestTime arrestLocation
#i#t <dbl> <dbl> <chr> <chr> <chr> <time> <chr>
1 1.26e7 25 B M 09/26/2012 22:25 O N Howard St

2 1.14e7 22 B F 11/160/2011 18:00 2700 Kinsey St

14 / 55

Operations that subset entities

The sample_frac function selects a fraction of entitites at random:

sample_frac(arrest_tab,

A tibble:

##

##

##

##

##

##

##

arrest

<db1l>

1.13e7

1.25e7

1.11e7

1.25e7

=

.26e7

.1)
10,453 x 15
age race sex
<dbl> <chr> <chr>
34 B M
20 B M
26 B M
20 B M
32 B M

arrestDate
<chr>

09/26/2011
04/05/2012
02/04/2011
09/05/2012

11/08/2012

arrestTime arrestLocation

<time>

19:30

04:30

10:10

10:45

08:35

<chr>

<NA>

1300 N Calhou..

<NA>

<NA>

3800 Brehms Ln

15/ 55

Pipelines of operations

All of the functions implementing our first set of operations have the
same argument/value structure.

They take a data frame as a first argument and return a data frame. We
refer to this as the data-->transform-->data pattern.

This is the core a lot of what we will do in class as part of data analyses.

Specifically, we will combine operations into pipelines that manipulate
data frames.

16 / 55

In R, the dplyr package introduces syntactic sugarto make this pattern

explicit.

arrest_tab %>%

A tibble:

##

##

##

##

##

##

##

arrest

<dbl>

1.24e7

1.12e7

1.24e7

1.26e7

1.26e7

sample_frac(.1)

10,453 x 15

age race sex
<dbl> <chr> <chr>

50 W M

44 B M

26 W M

23 B M

31 B M

arrestDate
<chr>

01/14/2012
05/01/2011
03/28/2012
12/05/2012

09/24/2012

arrestTime arrestLocation

<time>

17:

00:

02:

11:

17:

50

30

15

<chr>

600 Monroe St

<NA>

<NA>

<NA>

1900 E Federa..

17155

The %>% binary operator takes the value to its left and inserts it as the
first argument of the function call to its right. So the expression LHS

%>% T (another_argument) is equivalent to the expression f (LHS,
another_argument).

In pandas, you can chain . calls.

18 / 55

Using the %>% operator and the data-->transform-->data pattern of the
functions we've seen so far, we can create pipelines.

19 /55

For example, let's create a pipeline that:

1) filters our dataset to arrests between the ages of 18 and 25 2) selects
attributes sex, district and arrestDate (renamed as
arrest_date) 3) samples 50% of those arrests at random

We will assign the result to variable analysis_tab

20 /55

analysis_tab <- arrest_tab %>%

filter(age >= 18, age <= 25) %>%

select(sex, district, arrest_date=arrestDate) %>

sample_frac(.5)

analysis_tab

A tibble: 17,885 x 3

##

##

##

##

##

##

H#

sex

<chr>

district

<chr>

EASTERN

<NA>

<NA>

<NA>

WESTERN

arrest_date

<chr>

12/14/2012
08/10/2011
03/09/2012
04/06/2012

01/06/2011

’
%

21 /55

Exercise: Create a pipeline that:

1) filters dataset to arrests from the "SOUTHERN" district occurring
before "12:00" (arrestTime)

2) selects attributes, sex, age

3) samples 10 entities at random

22 [55

Principles: More Operations

Next, we learn a few more fundamental data operations: sorting, creating
new attributes, summarizing and grouping.

Finally we will take a short detour through a discussion on vectors.

23 /55

Operations that sort entities

Re-order entities based on the value of their age attribute, and then
slice to create a data frame with just the entities of interest

arrest_tab %>%

##

##

##

##

##

arrange(age) %>%

slice(1:10)

A tibble:

1

2

arrest

<dbl>

1.11e7

1.12e7

10 x 15

age race

sex

arrestDate

<db1> <chr> <chr> <chr>

0

0

B

W

F

M

01/24/2011

03/22/2011

arrestTime arrestLocation

<time>

12:45

08:00

<chr>

3700 Garrison..

<NA>

24 [55

Operations that sort entities

The arrange operation sorts entities by increasing attribute values. Use
desc helper to sort by decreasing value. E.g., find the arrests with the 10

oldest subjects:

arrest_tab %>%

A tibble:

##

##

##

1

slice(1:10)

arrange(desc(age)) %>%

arrestDate arrestTime arrestlLocation

10 x 15
arrest age race sex
<dbl> <dbl> <chr> <chr> <chr> <time>
1.13e7 87 B M 08/28/2011 15:00

<chr>

3200 E Baltim..

25 /55

Operations that create new attributes

We will often see that for many analyses we will create new attributes
based on existing attributes in a dataset.

e This is helpful for interpretation, visualization and/or statistical
modeling.

26 [55

Operations that create new attributes

Suppose | want to represent age in months rather than years in our
dataset. To do so | would multiply 12 to the existing age attribute. The
function mutate creates new attributes based on the result of a given

expression:

arrest_tab %>%
mutate(age_months = 12 x age) %>%

select(arrest, age, age_months)

A tibble: 104,528 x 3

arrest age age_months

2755

<dbl> <db1l1> <dbl>

Operations that summarize (aggregate) attribute
values over entities

Collapse a data frame to a single row containing the desired attribute
summaries.

BN __,, -

28 [55

Operations that summarize (aggregate) attribute
values over entities

Find minmum, maximum and average age in the dataset:

summarize(arrest_tab, min_age=min(age), mean_age=mean(age), max_age=max(age))

##

##

##

##

A tibble: 1 x 3

min_age mean_age max_age

<dbl>

1 0]

<dbl>

33.

2

<dbl>

87

29 /55

Operations that summarize (aggregate) attribute
values over entities

Operation(s) Result
mean, . .
, average and median attribute value
median
sd standard deviation of attribute values
min, max minimum and maximum attribute values
n, number of attribute values and number of distinct

n_distinct attribute values

IS any attribute value TRUE, or are all attribute values

any, all
TRUE 30 /55

Operations that summarize (aggregate) attribute
values over entities

Let's see the number of distinct districts in our dataset:

summarize(arrest_tab, n_distinct(district))

A tibble: 1 x 1
H# "n_distinct(district)’
<int>

1 10

We may also refer to these summarization operation as aggregation
since we are computing aggregates of attribute values. 31 /55

Operations that group entities

Summarization (aggregation) goes hand in hand with data grouping,
where summaries are computed conditioned on other attributes.

The notion of conditioning is fundamental to data analysis and we will
see it very frequently through the course.

It is the basis of statistical analysis and Machine Learning models and it
Is essential in understanding the design of effective visualizations.

32 /55

Operations that group entities

The goal is to group entities with the same value of one or more
attributes.

The group_by function in essence annotates the rows of a data frame
as belonging to a specific group based on the value of some chosen
attributes.

33/55

Operations that group entities

Group entities by the value of the district attribute.

group_by(arrest_tab, district)

A tibble:

Groups:

##

##

##

##

##

##

arrest

<dbl>

1 1.11e7

2 1.11e7

3 1.11e7

4 1.11e7

district [10]

age race

<dbl>

23

37

46

50

<chr> <chr>

B

104,528 x 15

seXx

\/

arrestDate
<chr>

01/01/2011
01/01/2011
01/01/2011

01/01/2011

arrestTime arrestLocation

<time>

00'00"

01'o0"

01'00"

04'00"

<chr>

<NA>

2000 Wilkens ..
2800 Mayfield..

2100 Ashburto..

34 /55

Operations that group entities

Subseqguent operations are then performed for each group
Independently.

For example, when summarize is applied to a grouped data frame,
summaries are computed for each group of entities, rather than the
whole set of entities.

35/55

Operations that group entities

Calculate minimum, maximum and average age for each district:

arrest_tab %>%

A tibble:

##

##

##

##

##

district

<chr>

1 CENTRAL

2 EASTERN

3 NORTHEASTERN

group_by (district) %>%

10 x 4

summarize(min_age=min(age), max_age=max(age), mean_age=mean(age))

min_age max_age mean_age

<dbl>

0

0

0

<db1l>

86

85

78

<db1l>

33.

34.

30

0

1

.4

36 /55

Operations that group entities

group_by/summarize defines new entities.

The entities in our original dataset are arrests. The entities for the result
of the last example are the districts.

This Is a general property of group by and summarize: it defines a data
set where entities are defined by distinct values of the attributes we use

for grouping.

37 /55

Operations that group entities

Another example: average age for subjects 21 years or older grouped by

district and sex:

arrest_tab %>%
filter (age >= 21) %>%
group_by(district, sex) %>%

summarize(mean_age=mean(age))

A tibble: 20 x 3
Groups: district [10]
#H district sex mean_age

<chr> <chr> <db1l>

38 /55

Operations that group entities

Exercise: Write a data operation pipeline that

1) filters records to the southern district and ages between 18 and 25 2)
computes mean arrest age for each sex

39/55

Vectors

We briefly saw previously operators to create vectors in R. For instance,
we can use seq to create a vector that consists of a sequence of
Integers:

multiples_of_three <- seq(3, 30, by=3)

multiples_of_three

[1] 3 6 9 12 15 18 21 24 27 30

40 / 55

Vectors

Let's how this is represented in R (the str is very handy to do this type
of digging around):

str(multiples_of_three)

num [1:10] 3 6 9 12 15 18 21 24 27 30

41 / 55

Vectors

Like many other languages we use square brackets [] to index vectors:

multiples_of_three[1]

[1] 3

42 [55

Vectors

We can use ranges as before

multiples_of_three[1:4]

[1] 3 6 9 12

43 [55

Vectors

We can use vectors of non-negative integers for indexing:

multiples_of_three[c(1,3,5)]

[1] 3 9 15

44 [55

Vectors

Or even logical vectors:

multiples_of_three[c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE)]

[1] 3 9 15 21 27

45/ 55

Vectors

In R, most operations are designed to work with vectors directly (we call
that vectorized).

For example, if | want to add two vectors together | would write: (look no
for loop!):

multiples_of_three + multiples_of_three

[1] 6 12 18 24 30 36 42 48 54 60

This also works for other arithmetic and logical operations (e.g., -, *, /,

&1 46 / 55

Vectors

In data analysis the vectoris probably the most fundamental data type
(other than basic numbers, strings, etc.).

Why? Consider getting data about one attribute, say height, for a group
of people. What do you get? An vector of numbers, all in the same unit
(say feet, inches or centimeters).

How about their name? Then you get a vector of strings.

Abstractly, we think of vectors as arrays of values, all of the same class
or datatype.

47 [55

Attributes as vectors

Each column, corresponding to an attribute, is a vector. We use the
pull function to extract a vector from a data frame.

We can then operate index them, or operate on them as vectors

age_vec <- arrest_tab %>% pull(age)

age_vec[1l:10]

[1] 23 37 46 50 33 41 29 20 24 53

48 [55

Attributes as vectors

Or,

12 * age_vec[1l:10]

[1] 276 444 552 600 396 492 348 240 288 636

49 [55

Attributes as vectors

The $ operator serves the same function.

age_vec <- arrest_tab$age

age_vec[1l:10]

[1] 23 37 46 50 33 41 29 20 24 53

50 /55

Attributes as vectors

The pull function however, can be used as part of a pipeline (using
operator %>%):

arrest_tab %>%
pull(age) %>%

mean ()

[1] 33.19639

51/55

Attributes as vectors

Functions

How to abstract pipelines? Factor into reusable functions that we can
apply in other analyses. E.g., a function that executes the age by
district/sex summarization we created before:

summarize_district <- function(df) {
df %>%
filter(age >= 21) %>%
group_by(district, sex) %>%

summarize(mean_age=mean(age))

} 52 /55

Attributes as vectors

You can include multiple expressions in the function definition (inside
brackets {}). Notice there is no return statement in this function. When
a function is called, it returns the value of the last expression in the
function definition. In this example, it would be the data frame we get
from applying the pipeline of operations.

53 /55

Attributes as vectors

You can find more information about vectors, functions and other
programming matters we might run into in class in Chapters 17-21 of R
for Data Science

54 [55

http://r4ds.had.co.nz/program-intro.html

Attributes as vectors

Exercise Abstract the pipeline you wrote in the previous unit into a
function that works for arbitrary districts. The function should take
arguments df and district.

55/55

