
Linear models for classi�cation
The general classification setting is: can we predict categorical
response/output , from set of predictors ?

As in the regression case, we assume training data 
. In this case, however, responses  are

categorical and take one of a fixed set of values.

Y X1, X2, … , Xp

(x1, y1), … , (xn, yn) yi
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Linear models for classi�cation

An example classi�cation problem

An individual's choice of transportation mode to commute to work.

Predictors: income, cost and time required for each of the alternatives:
driving/carpooling, biking, taking a bus, taking the train.

Response: whether the individual makes their commute by car, bike, bus
or train.
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Why not linear regression?

Why can't we use linear regression in the classification setting.

For categorical responses with more than two values, if order and scale
(units) don't make sense, then it's not a regression problem
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For binary (0/1) responses, it's a little better.

We could use linear regression in this setting and interpret response 
as a probability (e.g, if  predict )

Y

ŷ > 0.5 drugoverdose
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Classi�cation as probability estimation problem

Instead of modeling classes 0 or 1 directly, we will model the conditional
class probability , and classify based on this
probability.

In general, classification approaches use discriminant (think of scoring)
functions to do classification.

Logistic regression is one way of estimating the class probability 
 (also denoted )

p(Y = 1|X = x)

p(Y = 1|X = x) p(x)
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Logistic regression

The basic idea behind logistic regression is to build a linear model
related to , since linear regression directly (i.e. )
doesn't work.

p(x) p(x) = β0 + β1x
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Instead we build a linear model of log-odds:

log = β0 + β1x
p(x)

1 − p(x)
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Linear models for classi�cation
Here is how we compute a logistic regression model in R

default_fit <- glm(default ~ balance, data=Default, family=binomial)

default_fit %>% 

  tidy()

## # A tibble: 2 x 5

##   term  estimate std.error statistic

##   <chr>    <dbl>     <dbl>     <dbl>

## 1 (Int… -1.07e+1  0.361        -29.5

## 2 bala…  5.50e-3  0.000220      25.0

## # … with 1 more variable: p.value <dbl> 12 / 33

Linear models for classi�cation
Interpretation of logistic regression models is slightly different than the
linear regression model we looked at.

In this case, the odds that a person defaults increase by 
for every dollar in their account balance.

e0.05 ≈ 1.051
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As before, the accuracy of  as an estimate of the population
parameter is given its standard error.

We can again construct a confidence interval for this estimate as we've
done before.

β̂1
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Linear models for classi�cation
As before, we can do hypothesis testing of a relationship between
account balance and the probability of default.

In this case, we use a -statistic  which plays the role of the t-

statistic in linear regression: a scaled measure of our estimate (signal /
noise).

Z
β̂1

SE(β̂1)
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Linear models for classi�cation
As before, the P-value is the probability of seeing a Z-value as large
(e.g., 24.95) under the null hypothesis that there is no relationship
between balance and the probability of defaulting, i.e.,  in the
population.

β1 = 0
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Linear models for classi�cation
We require an algorithm required to estimate parameters  and 
according to a data fit criterion.

In logistic regression we use the Bernoulli probability model we saw
previously (think of flipping a coin weighted by ), and estimate
parameters to maximize the likelihood of the observed training data
under this coin flipping (binomial) model.

β0 β1

p(x)

17 / 33

Linear models for classi�cation
Usually, we do this by minimizing the negative of the log likelihood of the
model. I.e.: solve the following optimization problem

where . This is a non-linear (but convex)
optimization problem.

min
β0,β1

∑
i: yi=1

−yif(xi) + log(1 + ef(xi))

f(xi) = β0 + β1xi
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Making predictions

We can use a learned logistic regression model to make predictions.
E.g., "on average, the probability that a person with a balance of $1,000
defaults is":

p̂(1000) = ≈   ≈ 0.00576
eβ̂0+β̂1×1000

1 + eβ0+β1×1000

e−10.6514+0.0055×1000

1 + e−10.6514+0.0055×1000

19 / 33

Linear models for classi�cation

Multiple logistic regression

This is a classification analog to linear regression:

log = β0 + β1x1 + ⋯ + βpxp

p(x)

1 − p(x)
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fit <- glm(default ~ balance + income + student, data=Default, family="binomial")

fit %>% 

  tidy()

## # A tibble: 4 x 5

##   term  estimate std.error statistic

##   <chr>    <dbl>     <dbl>     <dbl>

## 1 (Int… -1.09e+1   4.92e-1   -22.1  

## 2 bala…  5.74e-3   2.32e-4    24.7  

## 3 inco…  3.03e-6   8.20e-6     0.370

## 4 stud… -6.47e-1   2.36e-1    -2.74 

## # … with 1 more variable: p.value <dbl>
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Linear models for classi�cation
As in multiple linear regression it is essential to avoid confounding!.
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Linear models for classi�cation
Consider an example of single logistic regression of default vs. student
status:

fit1 <- glm(default ~ student, data=Default, family="binomial")

fit1 %>% tidy()

## # A tibble: 2 x 5

##   term  estimate std.error statistic p.value

##   <chr>    <dbl>     <dbl>     <dbl>   <dbl>

## 1 (Int…   -3.50     0.0707    -49.6  0.     

## 2 stud…    0.405    0.115       3.52 4.31e-4
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and a multiple logistic regression:

fit2 <- glm(default ~ balance + income + student, data=Default, family="binomial")

fit2 %>% tidy()

## # A tibble: 4 x 5

##   term  estimate std.error statistic

##   <chr>    <dbl>     <dbl>     <dbl>

## 1 (Int… -1.09e+1   4.92e-1   -22.1  

## 2 bala…  5.74e-3   2.32e-4    24.7  

## 3 inco…  3.03e-6   8.20e-6     0.370

## 4 stud… -6.47e-1   2.36e-1    -2.74 24 / 33
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Classi�er evaluation
How do we determine how well classifiers are performing?

One way is to compute the error rate of the classifier, the percent of
mistakes it makes when predicting class
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Classi�er evaluation
We need a more precise language to describe classification mistakes:

True Class + True Class - Total

Predicted Class + True Positive (TP) False Positive (FP) P*

Predicted Class - False Negative (FN) True Negative (TN) N*

Total P N
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Classi�er evaluation
Using these we can define statistics that describe classifier performance

Name Definition Synonyms

False Positive Rate (FPR) FP / N Type-I error, 1-Specificity

True Positive Rate (TPR) TP / P
1 - Type-II error, power,
sensitivity, recall

Positive Predictive Value
(PPV)

TP / P*
precision, 1-false discovery
proportion

Negative Predicitve Value
(NPV)

FN / N*
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Classi�er evaluation
In the credit default case we may want to increase TPR (recall, make
sure we catch all defaults) at the expense of FPR (1-Specificity, clients
we lose because we think they will default)
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Classi�er evaluation
This leads to a natural question: Can we adjust our classifiers TPR and
FPR?

Remember we are classifying Yes if

What would happen if we use ?

log > 0 ⇒  P(Y = Yes|X) > 0.5
P(Y = Yes|X)

P(Y = No|X)

P(Y = Yes|X) > 0.2
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Classi�er evaluation
A way of describing the TPR and FPR tradeoff is by using the ROC
curve (Receiver Operating Characteristic) and the AUROC (area under
the ROC)

Another metric that is frequently used to understand classification errors
and tradeoffs is the precision-recall curve:
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Summary
We approach classification as a class probability estimation problem.

Logistic regression partition predictor space with linear functions.

Logistic regression learns parameter using Maximum Likelihood
(numerical optimization)
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Summary
Error and accuracy statistics are not enough to understand classifier
performance.

Classifications can be done using probability cutoffs to trade, e.g., TPR-
FPR (ROC curve), or precision-recall (PR curve).

Area under ROC or PR curve summarize classifier performance across
different cutoffs.
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As before, the accuracy of  as an estimate of the population
parameter is given its standard error.

We can again construct a confidence interval for this estimate as we've
done before.

β̂
1

14 / 33



Linear models for classi�cation
As before, we can do hypothesis testing of a relationship between
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Classi�er evaluation
This leads to a natural question: Can we adjust our classifiers TPR and
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Classi�er evaluation
A way of describing the TPR and FPR tradeoff is by using the ROC
curve (Receiver Operating Characteristic) and the AUROC (area under
the ROC)

Another metric that is frequently used to understand classification errors
and tradeoffs is the precision-recall curve:
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Summary
We approach classification as a class probability estimation problem.

Logistic regression partition predictor space with linear functions.

Logistic regression learns parameter using Maximum Likelihood
(numerical optimization)
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Summary
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