
Linear Regression
Linear regression is a very elegant, simple, powerful and commonly used
technique for data analysis.

We use it extensively in exploratory data analysis and in statistical
analyses
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Linear Regression

Simple Regression

The goal here is to analyze the relationship between a continuous
numerical attribute  and another (numerical or categorical) variable .

We assume that in the population, the relationship between the two is
given by a linear function:

Y X

Y = β0 + β1X
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Linear Regression
Here is (simulated) data from an advertising campaign measuring sales
and the amount spent in advertising.

sales ≈ β0 + β1 × TV
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Linear Regression
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Linear Regression
We would say that we regress sales on TV when we perform this
regression analysis.

As before, given data we would like to estimate what this relationship is
in the population (what is the population in this case?).

What do we need to estimate in this case? Values for  and . What is
the criteria that we use to estimate them?

β0 β1
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Linear Regression
We are stating mathematically:

E[Y |X = x] = β0 + β1x
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Linear Regression
Given a dataset, the problem is then to find the values of  and  that
minimize deviation between data and expectation

Like the estimation of central trend (mean) we use squared devation to
do this.

β0 β1
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Linear Regression
The linear regression problem

Given data , find values  and  that
minimize objective or loss function RSS (residual sum of squares):

(x1, y1), (x2, y2), … , (xn, yn) β0 β1

arg min
β0,β1

RSS = ∑
i

(yi − (β0 + β1xi))21

2
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Linear Regression
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Linear Regression
Like derivation of the mean as a measure of central tendency we can
derive the values of minimizers  and .

We use the same principle, compute derivatives (partial this time) of the
objective function RSS, set to zero and solve.

β̂0 β̂1
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Linear Regression

β̂1 =

=

β̂0 = ¯̄̄y − β̂1
¯̄x̄

∑
n

i=1(yi − ¯̄̄y)(xi − ¯̄x̄)

∑
n

i=1(xi − ¯̄x̄)2

cov(y, x)

var(x)
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Linear Regression
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Linear Regression
In R, linear models are built using the lm function

auto_fit <- lm(mpg~weight, data=Auto)

auto_fit

## 

## Call:

## lm(formula = mpg ~ weight, data = Auto)

## 

## Coefficients:

## (Intercept)       weight  

##   46.216525    -0.007647 13 / 92

Linear Regression
This states that for this dataset

 .

What's the interpretation?

β̂0 = 46.2165245 β̂1 = −0.0076473
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Linear Regression
According to this model,

a weightless car weight=0 would run  miles per gallon on
average, and,

on average, a car would run  miles per gallon fewer for every
extra pound of weight.

Units of the outcome  and the predictor  matter for the interpretation
of these values.

≈ 46.22

≈ 0.01

Y X
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Linear Regression

Inference

Now that we have an estimate, we want to know its precision.

The main point is to understand that like the sample mean, the
regression line we learn from a specific dataset is an estimate.

A different sample from the same population would give us a different
estimate (regression line).
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Linear Regression
The Central Limit Theorem tells us

on average, we are close to population regression line (I.e., close to 
and ),

the spread around  and  is well approximated by a normal
distribution and

the spread goes to zero as the sample size increases.

β0

β1

β0 β1
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Linear Regression
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Linear Regression

Con�dence Interval

We can construct a confidence interval to say how precise we think our
estimates are.

We want to see how precise our estimate of  is, since that captures
the relationship between the two variables.

β1
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Linear Regression
First, we calculate a standard error estimate for :β1

se( ^beta1)2 =
∑i(yi − ŷ i)

2

∑i(xi − ¯̄x̄)2
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Linear Regression
and construct a 95% confidence interval

β1 = β̂1 ± 1.95 × se( ^beta1)
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Linear Regression
Going back to our example:

auto_fit_stats <- auto_fit %>%

  tidy() %>%

  select(term, estimate, std.error)

auto_fit_stats

## # A tibble: 2 x 3

##   term        estimate std.error

##   <chr>          <dbl>     <dbl>

## 1 (Intercept) 46.2      0.799   

## 2 weight      -0.00765  0.000258 22 / 92

Linear Regression
Given the confidence interval, we would say,

"on average, a car runs  miles per gallon fewer
per pound of weight.

−0.0082 − 0.0076−0.0071
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Linear Regression

The -statistic and the -distribution

We can also test a null hypothesis about this relationship: "there is no
relationship between weight and miles per gallon",

this translates to .

t t

β1 = 0
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Linear Regression
Again, using the same argument based on the CLT, if this hypothesis is
true then the distribution of  is well approximated by ,

if we observe the learned  is too far from 0 according to this
distribution then we reject the hypothesis.

β̂1 N(0, se(β̂1))

β̂1
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Linear Regression
The CLT states that the normal approximation is good as sample size
increases, but what about moderate sample sizes (say, less than 100)?

The  distribution provides a better approximation of the sampling
distribution of these estimates for moderate sample sizes, and it tends to
the normal distribution as sample size increases.

t
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Linear Regression
The  distribution is commonly used in this testing situation to obtain the
probability of rejecting the null hypothesis.

It is based on the -statistic

t

t

β̂1

se(β̂1)
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Linear Regression
You can think of this as a signal-to-noise ratio, or a standardizing
transformation on the estimated parameter.
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Linear Regression
In our example, we get a  statistic and p-value as follows:

auto_fit_stats <- auto_fit %>%

  tidy()

auto_fit_stats

## # A tibble: 2 x 5

##   term  estimate std.error statistic

##   <chr>    <dbl>     <dbl>     <dbl>

## 1 (Int… 46.2      0.799         57.9

## 2 weig… -0.00765  0.000258     -29.6

## # … with 1 more variable: p.value <dbl>

t

29 / 92

Linear Regression
We would say:

"We found a statistically significant relationship between weight and
miles per gallon. On average, a car runs  miles
per gallon fewer per pound of weight ( =-29.65,  6.02e-102 )."

−0.0082 − 0.0076−0.0071

t p <
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Linear Regression

Global Fit

We can make predictions based on our conditional expectation,

that prediction should be better than a prediction of the outcome with a
simple average.

We can use this comparison as a measure of how good of a job we are
doing using our model to fit this data: how much of the variance of  can
we explain with our model.

Y
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Linear Regression
To do this we can calculate total sum of squares:

(this is the squared error of a prediction using the sample mean of )

TSS = ∑
i

(yi − ¯̄̄y)2

Y
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Linear Regression
and the residual sum of squares:

(which is the squared error of a prediction using the linear model we
learned)

RSS = ∑
i

(yi − ŷ i)
2
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Linear Regression
The commonly used  measure compares these two quantities:R2

R2 = = 1 −
TSS − RSS

TSS

RSS

TSS
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Linear Regression
These types of global statistics for the linear model can be obtained
using the glance function in the broom package. In our example

auto_fit %>%

  glance() %>%

  select(r.squared, sigma, statistic, df, p.value)

## # A tibble: 1 x 5

##   r.squared sigma statistic    df   p.value

##       <dbl> <dbl>     <dbl> <int>     <dbl>

## 1     0.693  4.33      879.     2 6.02e-102
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Linear Regression

Some important technicalities

We mentioned above that predictor  could be numeric or categorical.

However, this is not precisely true. We use a transformation to represent
categorical variables.

X
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Linear Regression
Here is a simple example:

Suppose we have a categorical attributesex. We can create a 0-1
dummy variable  as we have seen before.

and fit a model .

x

y = β0 + β1x
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Linear Regression
What is the conditional expectation given by this model?

If the person is male, then , if the person is female, then 
.

So, what is the interpretation of ?

y = β0

y = β0 + β1

β1
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Linear Regression
What is the conditional expectation given by this model?

If the person is male, then , if the person is female, then 
.

So, what is the interpretation of ?

The average difference in credit card balance between females and
males.

y = β0

y = β0 + β1

β1
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Linear Regression
We could do a +1/-1 different encoding as well.

Then what is the interpretation of  in this case?β1
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Linear Regression
Note, that when we call the lm(y~x) function and x is a factor with two
levels, the first transformation is used by default.

What if there are more than 2 levels? We need multiple regression,
which we will see shortly.
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Issues with linear regression
There are some assumptions underlying the inferences and predictions
we make using linear regression

We should verify are met when we use this framework.
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Issues with linear regression

Non-linearity of outcome-predictor relationship

What if the underlying relationship is not linear?

We can use exploratory visual analysis to do this for now by plotting
residuals  as a function of the fitted values .(yi − ŷ i)

2 ŷ i
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Issues with linear regression
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Issues with linear regression

Correlated Error

For our inferences to be valid, we need residuals to be independent and
identically distributed.

We can spot non independence if we observe a trend in residuals as a
function of the predictor .X
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Issues with linear regression
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Issues with linear regression

Non-constant variance

Here is an illustration, and a possible fix using a log transformation on
the outcome .Y
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Multiple linear regression
In this case, we use models of conditional expectation represented as
linear functions of multiple variables:

E[Y |X1 = x1, X2 = x2, … , Xp = xp] = β0 + β1x1 + β2x2 + ⋯ β3x3
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Multiple linear regression
In the case of our advertising example, this would be a model:

sales = β0 + β1 × TV + β2 × newspaper + β3 × facebook
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Multiple linear regression
These models let us make statements of the type:

"holding everything else constant, sales increased on average by 1000
per dollar spent on Facebook advertising" (this would be given by
parameter  in the example model).β3
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Multiple linear regression

Estimation in multivariate regression

Generalizing simple regression, we estimate 's by minimizing an
objective function that represents the difference between observed data
and our expectation based on the linear model:

β

RSS =
n

∑
i=1

(yi − ŷ i)
2

=
n

∑
i=1

(yi − (β0 + β1x1 + ⋯ + βpxp))2

1

2

1

2
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Multiple linear regression
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Multiple linear regression
The minimizer is found using numerical algorithms to solve this type of
least squares problems.

Later in the course we will look at stochastic gradient descent, a simple
algorithm that scales to very large datasets.
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Multiple linear regression

Example (cont'd)

auto_fit <- lm(mpg~1+weight+cylinders+horsepower+displacement+year, data=Auto)

auto_fit
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Multiple linear regression
## 

## Call:

## lm(formula = mpg ~ 1 + weight + cylinders + horsepower + displacement + 

##     year, data = Auto)

## 

## Coefficients:

##  (Intercept)        weight     cylinders  

##   -12.779493     -0.006524     -0.343690  

##   horsepower  displacement          year  

##    -0.007715      0.006996      0.749924
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Multiple linear regression
From this model we can make the statement:

"Holding everything else constant, cars run 0.76 miles per gallon more
each year on average".
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Multiple linear regression

Statistical statements (cont'd)

Like simple linear regression, we can construct confidence intervals, and
test a null hypothesis of no relationship (  ) for the parameter
corresponding to each predictor.

βj = 0
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Multiple linear regression
This is again nicely managed by the broom package:

auto_fit_stats <- auto_fit %>%

  tidy()

auto_fit_stats

## # A tibble: 6 x 5

##   term  estimate std.error statistic

##   <chr>    <dbl>     <dbl>     <dbl>

## 1 (Int… -1.28e+1  4.27        -2.99 

## 2 weig… -6.52e-3  0.000587   -11.1  

## 3 cyli… -3.44e-1  0.332       -1.04 57 / 92

Multiple linear regression
In this case we would reject the null hypothesis of no relationship only for
predictors weight and year.

We would write the statement for year as follows:

"Holding everything else constant, cars run  miles per gallon
more each year on average (P<1e-16)".

0.650.750.85
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Multiple linear regression

The F-test

We can make additional statements for multivariate regression:

"is there a relationship between any of the predictors and the
response?".

Mathematically, we write this as .β1 = β2 = ⋯ = βp = 0
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Multiple linear regression
As before, we can compare total outcome variance the residual sum of
squared error  using the  statistic:RSS F

(TSS − RSS)/p

RSS/(n − p − 1)
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Multiple linear regression
Back to our example, we use the glance function to compute this type
of summary:

auto_fit %>% 

  glance() %>%

  select(r.squared, sigma, statistic, df, p.value) %>%

  knitr::kable("html")

r.squared sigma statistic df p.value

0.8089093 3.433902 326.7965 6 0
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Multiple linear regression
In comparison with the linear model only using weight, this multivariate
model explains more of the variance of mpg, but using more predictors.

This is where the notion of degrees of freedom comes in: we now have a
model with expanded representational ability.
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Multiple linear regression
The bigger the model, we are conditioning more and more,

given a fixed dataset, have fewer data points to estimate conditional
expectation for each value of the predictors.

estimated conditional expectation is less precise.
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Multiple linear regression
To capture this phenomenon, we want statistics that tradeoff how well the
model fits the data, and the "complexity" of the model.
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Multiple linear regression
Now, we can look at the full output of the glance function:

auto_fit %>%

  glance() %>%

  knitr::kable("html")

r.squared adj.r.squared sigma statistic p.value df logLik AIC

0.8089093 0.806434 3.433902 326.7965 0 6 -1036.81 2087.62 211
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Multiple linear regression
Columns AIC and BIC display statistics that penalize model fit with
model size.

The smaller this value, the better.

Let's now compare a model only using weight, a model only using
weight and year and the full multiple regression model we saw before.
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Multiple linear regression

lm(mpg~weight, data=Auto) %>%

  glance() %>%

  knitr::kable("html")

r.squared adj.r.squared sigma statistic p.value df logLik AIC

0.6926304 0.6918423 4.332712 878.8309 0 2 -1129.969 2265.939 2

67 / 92

Multiple linear regression

lm(mpg~weight+year, data=Auto) %>%

  glance() %>%

  knitr::kable("html")

r.squared adj.r.squared sigma statistic p.value df logLik AIC

0.8081803 0.8071941 3.427153 819.473 0 3 -1037.556 2083.113 20
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Multiple linear regression
In this case, using more predictors beyond weight and year doesn't
help.
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Multiple linear regression

Categorical predictors (cont'd)

We saw transformations for categorical predictors with only two values.

In our example we have the origin predictor, corresponding to where
the car was manufactured, which has multiple values

Auto <- Auto %>%

  mutate(origin=factor(origin))

levels(Auto$origin)

## [1] "1" "2" "3"
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Multiple linear regression
The lm function in R does this transformation by default when a variable
has class factor.

We can see what the underlying numerical predictors look like by using
the model_matrix function and passing it the model formula we build:

##   (Intercept) origin2 origin3 origin

## 1           1       0       0      1

## 2           1       0       0      1

## 3           1       0       0      1

## 4           1       0       0      1

## 5           1       0       0      1

## 6 1 0 0 1
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Multiple linear regression
##   (Intercept) origin2 origin3 origin

## 1           1       1       0      2

## 2           1       1       0      2

## 3           1       1       0      2

## 4           1       1       0      2

## 5           1       1       0      2

## 6           1       1       0      2
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Multiple linear regression
##   (Intercept) origin2 origin3 origin

## 1           1       0       1      3

## 2           1       0       1      3

## 3           1       0       1      3

## 4           1       0       1      3

## 5           1       0       1      3

## 6           1       0       1      3
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Interactions in linear models
The linear models so far include additive terms for a single predictor.

That let us made statemnts of the type "holding everything else
constant...".

But what if we think that a pair of predictors together have a relationship
with the outcome.
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Interactions in linear models
We can add these interaction terms to our linear models as products

EY |X1 = x1, X2 = x2 = β0 + β1x1 + β2x2 + β12x1x2
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Interactions in linear models
Consider the advertising example:

If  is positive, then the effect of increasing TV advertising money is
increased if facebook advertising is also increased.

sales = β0 + β1 × TV + β2 × facebook + β3 × (TV × facebook)

β3
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Interactions in linear models
When using categorical variables, interactions have an elegant
interpretation.

Consider our car example, and suppose we build a model with an
interaction between weight and origin.
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Interactions in linear models
Let's look at what the numerical predictors look like:

##   (Intercept) weight origin2 origin3

## 1           1   3504       0       0

## 2           1   3693       0       0

## 3           1   3436       0       0

## 4           1   3433       0       0

## 5           1   3449       0       0

## 6           1   4341       0       0

##   weight:origin2 weight:origin3 origin

## 1              0              0      1

## 2              0              0      1 78 / 92

Interactions in linear models
##   (Intercept) weight origin2 origin3

## 1           1   1835       1       0

## 2           1   2672       1       0

## 3           1   2430       1       0

## 4           1   2375       1       0

## 5           1   2234       1       0

## 6           1   2123       1       0

##   weight:origin2 weight:origin3 origin

## 1           1835              0      2

## 2           2672              0      2

## 3           2430              0      2

## 4           2375              0      2
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Interactions in linear models
##   (Intercept) weight origin2 origin3

## 1           1   2372       0       1

## 2           1   2130       0       1

## 3           1   2130       0       1

## 4           1   2228       0       1

## 5           1   1773       0       1

## 6           1   1613       0       1

##   weight:origin2 weight:origin3 origin

## 1              0           2372      3

## 2              0           2130      3

## 3              0           2130      3

## 4              0           2228      3
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Interactions in linear models
So what is the expected miles per gallon for a car with origin == 1 as
a function of weight?

mpg = β0 + β1 × weight
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Interactions in linear models
Now how about a car with origin == 2?

mpg = β0 + β1 × weight + β2 + β4 × weight
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Interactions in linear models
Now think of the graphical representation of these lines.

For origin == 1 the intercept of the regression line is  and its slope
is .

For origin == 2 the intercept of the regression line is  and its
slope is .

β0

β1

β0 + β2

β1 + β4
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Interactions in linear models
ggplot does this when we map a factor variable to a aesthetic, say
color, and use the geom_smooth method:

Auto %>%

  ggplot(aes(x=weight, y=mpg, color=origin)) 

    geom_point() +

    geom_smooth(method=lm)
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Interactions in linear models
The intercept of the three lines seem to be different, but the slope of
origin == 3 looks different (decreases faster) than the slopes of
origin == 1 and origin == 2 that look very similar to each other.
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Interactions in linear models
Let's fit the model and see how much statistical confidence we can give
to those observations:

## # A tibble: 6 x 5

##   term  estimate std.error statistic

##   <chr>    <dbl>     <dbl>     <dbl>

## 1 (Int…  4.31e+1  1.19      36.4    

## 2 weig… -6.85e-3  0.000342 -20.0    

## 3 orig…  1.12e+0  2.88       0.391  

## 4 orig…  1.11e+1  3.57       3.11   

## 5 weig…  3.58e-6  0.00111    0.00322

## 6 weig… -3.87e-3  0.00154   -2.51   86 / 92

Interactions in linear models
There is still an issue here because this could be the result of a poor fit
from a linear model, it seems none of these lines do a very good job of
modeling the data we have.
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Interactions in linear models
We can again check this for this model:

88 / 92

Additional issues with linear regression
Multiple linear regression introduces an additional issue that is extremely
important to consider when interpreting the results of these analyses:
collinearity.
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Additional issues with linear regression
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Additional issues with linear regression
In that case, the set of 's that minimize RSS may not be unique, and
therefore our interpretation is invalid.

You can identify this potential problem by regressing predictors onto
each other.

The usual solution is to fit models only including one of the colinear
variables.

β
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Summary
Flexible, but highly biased method for modeling relationships between
variables and deriving predictions for continuous attributes.

We have seen how it is used in the context of EDA and statistical
inference.

Saw important caveats to their application.
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Linear Regression
Linear regression is a very elegant, simple, powerful and commonly used
technique for data analysis.

We use it extensively in exploratory data analysis and in statistical
analyses
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Linear Regression

Simple Regression

The goal here is to analyze the relationship between a continuous
numerical attribute  and another (numerical or categorical) variable .

We assume that in the population, the relationship between the two is
given by a linear function:

Y X

Y = β0 + β1X
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Linear Regression
Here is (simulated) data from an advertising campaign measuring sales
and the amount spent in advertising.

sales ≈ β0 + β1 × TV
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Linear Regression
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Linear Regression
We would say that we regress sales on TV when we perform this
regression analysis.

As before, given data we would like to estimate what this relationship is
in the population (what is the population in this case?).

What do we need to estimate in this case? Values for  and . What is
the criteria that we use to estimate them?

β0 β1
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Linear Regression
We are stating mathematically:

E[Y |X = x] = β0 + β1x
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Linear Regression
Given a dataset, the problem is then to find the values of  and  that
minimize deviation between data and expectation

Like the estimation of central trend (mean) we use squared devation to
do this.

β0 β1
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Linear Regression
The linear regression problem

Given data , find values  and  that
minimize objective or loss function RSS (residual sum of squares):

(x1, y1), (x2, y2), … , (xn, yn) β0 β1

arg min
β0,β1

RSS = ∑
i

(yi − (β0 + β1xi))21

2
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Linear Regression
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Linear Regression
Like derivation of the mean as a measure of central tendency we can
derive the values of minimizers  and .

We use the same principle, compute derivatives (partial this time) of the
objective function RSS, set to zero and solve.

β̂
0

β̂
1
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Linear Regression

β̂1 =

=

β̂0 = ¯̄̄y − β̂1
¯̄x̄

∑
n

i=1(yi − ¯̄̄y)(xi − ¯̄x̄)

∑
n

i=1(xi − ¯̄x̄)2

cov(y, x)

var(x)
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Linear Regression
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Linear Regression
In R, linear models are built using the lm function

auto_fit <- lm(mpg~weight, data=Auto)

auto_fit

## 

## Call:

## lm(formula = mpg ~ weight, data = Auto)

## 

## Coefficients:

## (Intercept)       weight  

##   46.216525    -0.007647 13 / 92



Linear Regression
This states that for this dataset

 .

What's the interpretation?

β̂
0

= 46.2165245 β̂
1

= −0.0076473
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Linear Regression
According to this model,

a weightless car weight=0 would run  miles per gallon on
average, and,

on average, a car would run  miles per gallon fewer for every
extra pound of weight.

Units of the outcome  and the predictor  matter for the interpretation
of these values.

≈ 46.22

≈ 0.01

Y X
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Linear Regression

Inference

Now that we have an estimate, we want to know its precision.

The main point is to understand that like the sample mean, the
regression line we learn from a specific dataset is an estimate.

A different sample from the same population would give us a different
estimate (regression line).
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Linear Regression
The Central Limit Theorem tells us

on average, we are close to population regression line (I.e., close to 
and ),

the spread around  and  is well approximated by a normal
distribution and

the spread goes to zero as the sample size increases.

β0

β1

β0 β1
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Linear Regression
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Linear Regression

Con�dence Interval

We can construct a confidence interval to say how precise we think our
estimates are.

We want to see how precise our estimate of  is, since that captures
the relationship between the two variables.

β1
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Linear Regression
First, we calculate a standard error estimate for :β1

se( ^beta1)2 =
∑i(yi − ŷ i)

2

∑i(xi − ¯̄x̄)2
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Linear Regression
and construct a 95% confidence interval

β1 = β̂1 ± 1.95 × se( ^beta1)
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Linear Regression
Going back to our example:

auto_fit_stats <- auto_fit %>%

  tidy() %>%

  select(term, estimate, std.error)

auto_fit_stats

## # A tibble: 2 x 3

##   term        estimate std.error

##   <chr>          <dbl>     <dbl>

## 1 (Intercept) 46.2      0.799   

## 2 weight      -0.00765  0.000258 22 / 92



Linear Regression
Given the confidence interval, we would say,

"on average, a car runs  miles per gallon fewer
per pound of weight.

−0.0082 − 0.0076−0.0071
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Linear Regression

The -statistic and the -distribution

We can also test a null hypothesis about this relationship: "there is no
relationship between weight and miles per gallon",

this translates to .

t t

β1 = 0
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Linear Regression
Again, using the same argument based on the CLT, if this hypothesis is
true then the distribution of  is well approximated by ,

if we observe the learned  is too far from 0 according to this
distribution then we reject the hypothesis.

β̂1 N(0, se(β̂1))

β̂1
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Linear Regression
The CLT states that the normal approximation is good as sample size
increases, but what about moderate sample sizes (say, less than 100)?

The  distribution provides a better approximation of the sampling
distribution of these estimates for moderate sample sizes, and it tends to
the normal distribution as sample size increases.

t
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Linear Regression
The  distribution is commonly used in this testing situation to obtain the
probability of rejecting the null hypothesis.

It is based on the -statistic

t

t

β̂1

se(β̂1)
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Linear Regression
You can think of this as a signal-to-noise ratio, or a standardizing
transformation on the estimated parameter.
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Linear Regression
In our example, we get a  statistic and p-value as follows:

auto_fit_stats <- auto_fit %>%

  tidy()

auto_fit_stats

## # A tibble: 2 x 5

##   term  estimate std.error statistic

##   <chr>    <dbl>     <dbl>     <dbl>

## 1 (Int… 46.2      0.799         57.9

## 2 weig… -0.00765  0.000258     -29.6

## # … with 1 more variable: p.value <dbl>

t
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Linear Regression
We would say:

"We found a statistically significant relationship between weight and
miles per gallon. On average, a car runs  miles
per gallon fewer per pound of weight ( =-29.65,  6.02e-102 )."

−0.0082 − 0.0076−0.0071

t p <
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Linear Regression

Global Fit

We can make predictions based on our conditional expectation,

that prediction should be better than a prediction of the outcome with a
simple average.

We can use this comparison as a measure of how good of a job we are
doing using our model to fit this data: how much of the variance of  can
we explain with our model.

Y
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Linear Regression
To do this we can calculate total sum of squares:

(this is the squared error of a prediction using the sample mean of )

TSS = ∑
i

(yi − ¯̄̄y)2

Y
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Linear Regression
and the residual sum of squares:

(which is the squared error of a prediction using the linear model we
learned)

RSS = ∑
i

(yi − ŷ i)
2
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Linear Regression
The commonly used  measure compares these two quantities:R

2

R
2

= = 1 −
TSS − RSS

TSS

RSS

TSS
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Linear Regression
These types of global statistics for the linear model can be obtained
using the glance function in the broom package. In our example

auto_fit %>%

  glance() %>%

  select(r.squared, sigma, statistic, df, p.value)

## # A tibble: 1 x 5

##   r.squared sigma statistic    df   p.value

##       <dbl> <dbl>     <dbl> <int>     <dbl>

## 1     0.693  4.33      879.     2 6.02e-102
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Linear Regression

Some important technicalities

We mentioned above that predictor  could be numeric or categorical.

However, this is not precisely true. We use a transformation to represent
categorical variables.

X
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Linear Regression
Here is a simple example:

Suppose we have a categorical attributesex. We can create a 0-1
dummy variable  as we have seen before.

and fit a model .

x

y = β0 + β1x
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Linear Regression
What is the conditional expectation given by this model?

If the person is male, then , if the person is female, then 
.

So, what is the interpretation of ?

y = β0

y = β0 + β1

β1
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Linear Regression
What is the conditional expectation given by this model?

If the person is male, then , if the person is female, then 
.

So, what is the interpretation of ?

The average difference in credit card balance between females and
males.

y = β0

y = β0 + β1

β1
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Linear Regression
We could do a +1/-1 different encoding as well.

Then what is the interpretation of  in this case?β1
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Linear Regression
Note, that when we call the lm(y~x) function and x is a factor with two
levels, the first transformation is used by default.

What if there are more than 2 levels? We need multiple regression,
which we will see shortly.
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Issues with linear regression
There are some assumptions underlying the inferences and predictions
we make using linear regression

We should verify are met when we use this framework.
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Issues with linear regression

Non-linearity of outcome-predictor relationship

What if the underlying relationship is not linear?

We can use exploratory visual analysis to do this for now by plotting
residuals  as a function of the fitted values .(yi − ŷ i)

2 ŷ i

42 / 92



Issues with linear regression
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Issues with linear regression

Correlated Error

For our inferences to be valid, we need residuals to be independent and
identically distributed.

We can spot non independence if we observe a trend in residuals as a
function of the predictor .X
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Issues with linear regression
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Issues with linear regression

Non-constant variance

Here is an illustration, and a possible fix using a log transformation on
the outcome .Y
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Multiple linear regression
In this case, we use models of conditional expectation represented as
linear functions of multiple variables:

E[Y |X1 = x1, X2 = x2, … , Xp = xp] = β0 + β1x1 + β2x2 + ⋯ β3x3
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Multiple linear regression
In the case of our advertising example, this would be a model:

sales = β0 + β1 × TV + β2 × newspaper + β3 × facebook
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Multiple linear regression
These models let us make statements of the type:

"holding everything else constant, sales increased on average by 1000
per dollar spent on Facebook advertising" (this would be given by
parameter  in the example model).β3
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Multiple linear regression

Estimation in multivariate regression

Generalizing simple regression, we estimate 's by minimizing an
objective function that represents the difference between observed data
and our expectation based on the linear model:

β

RSS =
n

∑
i=1

(yi − ŷ i)
2

=
n

∑
i=1

(yi − (β0 + β1x1 + ⋯ + βpxp))2

1

2

1

2
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Multiple linear regression
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Multiple linear regression
The minimizer is found using numerical algorithms to solve this type of
least squares problems.

Later in the course we will look at stochastic gradient descent, a simple
algorithm that scales to very large datasets.
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Multiple linear regression

Example (cont'd)

auto_fit <- lm(mpg~1+weight+cylinders+horsepower+displacement+year, data=Auto)

auto_fit
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Multiple linear regression
## 

## Call:

## lm(formula = mpg ~ 1 + weight + cylinders + horsepower + displacement + 

##     year, data = Auto)

## 

## Coefficients:

##  (Intercept)        weight     cylinders  

##   -12.779493     -0.006524     -0.343690  

##   horsepower  displacement          year  

##    -0.007715      0.006996      0.749924
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Multiple linear regression
From this model we can make the statement:

"Holding everything else constant, cars run 0.76 miles per gallon more
each year on average".
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Multiple linear regression

Statistical statements (cont'd)

Like simple linear regression, we can construct confidence intervals, and
test a null hypothesis of no relationship (  ) for the parameter
corresponding to each predictor.

βj = 0
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Multiple linear regression
This is again nicely managed by the broom package:

auto_fit_stats <- auto_fit %>%

  tidy()

auto_fit_stats

## # A tibble: 6 x 5

##   term  estimate std.error statistic

##   <chr>    <dbl>     <dbl>     <dbl>

## 1 (Int… -1.28e+1  4.27        -2.99 

## 2 weig… -6.52e-3  0.000587   -11.1  

## 3 cyli… -3.44e-1  0.332       -1.04 57 / 92



Multiple linear regression
In this case we would reject the null hypothesis of no relationship only for
predictors weight and year.

We would write the statement for year as follows:

"Holding everything else constant, cars run  miles per gallon
more each year on average (P<1e-16)".

0.650.750.85
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Multiple linear regression

The F-test

We can make additional statements for multivariate regression:

"is there a relationship between any of the predictors and the
response?".

Mathematically, we write this as .β1 = β2 = ⋯ = βp = 0

59 / 92



Multiple linear regression
As before, we can compare total outcome variance the residual sum of
squared error  using the  statistic:RSS F

(TSS − RSS)/p

RSS/(n − p − 1)
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Multiple linear regression
Back to our example, we use the glance function to compute this type
of summary:

auto_fit %>% 

  glance() %>%

  select(r.squared, sigma, statistic, df, p.value) %>%

  knitr::kable("html")

r.squared sigma statistic df p.value

0.8089093 3.433902 326.7965 6 0
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Multiple linear regression
In comparison with the linear model only using weight, this multivariate
model explains more of the variance of mpg, but using more predictors.

This is where the notion of degrees of freedom comes in: we now have a
model with expanded representational ability.
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Multiple linear regression
The bigger the model, we are conditioning more and more,

given a fixed dataset, have fewer data points to estimate conditional
expectation for each value of the predictors.

estimated conditional expectation is less precise.
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Multiple linear regression
To capture this phenomenon, we want statistics that tradeoff how well the
model fits the data, and the "complexity" of the model.
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Multiple linear regression
Now, we can look at the full output of the glance function:

auto_fit %>%

  glance() %>%

  knitr::kable("html")

r.squared adj.r.squared sigma statistic p.value df logLik AIC

0.8089093 0.806434 3.433902 326.7965 0 6 -1036.81 2087.62 211
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Multiple linear regression
Columns AIC and BIC display statistics that penalize model fit with
model size.

The smaller this value, the better.

Let's now compare a model only using weight, a model only using
weight and year and the full multiple regression model we saw before.
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Multiple linear regression

lm(mpg~weight, data=Auto) %>%

  glance() %>%

  knitr::kable("html")

r.squared adj.r.squared sigma statistic p.value df logLik AIC

0.6926304 0.6918423 4.332712 878.8309 0 2 -1129.969 2265.939 2
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Multiple linear regression

lm(mpg~weight+year, data=Auto) %>%

  glance() %>%

  knitr::kable("html")

r.squared adj.r.squared sigma statistic p.value df logLik AIC

0.8081803 0.8071941 3.427153 819.473 0 3 -1037.556 2083.113 20

68 / 92



Multiple linear regression
In this case, using more predictors beyond weight and year doesn't
help.
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Multiple linear regression

Categorical predictors (cont'd)

We saw transformations for categorical predictors with only two values.

In our example we have the origin predictor, corresponding to where
the car was manufactured, which has multiple values

Auto <- Auto %>%

  mutate(origin=factor(origin))

levels(Auto$origin)

## [1] "1" "2" "3"
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Multiple linear regression
The lm function in R does this transformation by default when a variable
has class factor.

We can see what the underlying numerical predictors look like by using
the model_matrix function and passing it the model formula we build:

##   (Intercept) origin2 origin3 origin

## 1           1       0       0      1

## 2           1       0       0      1

## 3           1       0       0      1

## 4           1       0       0      1

## 5           1       0       0      1

## 6 1 0 0 1
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Multiple linear regression
##   (Intercept) origin2 origin3 origin

## 1           1       1       0      2

## 2           1       1       0      2

## 3           1       1       0      2

## 4           1       1       0      2

## 5           1       1       0      2

## 6           1       1       0      2
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Multiple linear regression
##   (Intercept) origin2 origin3 origin

## 1           1       0       1      3

## 2           1       0       1      3

## 3           1       0       1      3

## 4           1       0       1      3

## 5           1       0       1      3

## 6           1       0       1      3
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Interactions in linear models
The linear models so far include additive terms for a single predictor.

That let us made statemnts of the type "holding everything else
constant...".

But what if we think that a pair of predictors together have a relationship
with the outcome.
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Interactions in linear models
We can add these interaction terms to our linear models as products

EY |X1 = x1, X2 = x2 = β0 + β1x1 + β2x2 + β12x1x2
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Interactions in linear models
Consider the advertising example:

If  is positive, then the effect of increasing TV advertising money is
increased if facebook advertising is also increased.

sales = β0 + β1 × TV + β2 × facebook + β3 × (TV × facebook)

β3
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Interactions in linear models
When using categorical variables, interactions have an elegant
interpretation.

Consider our car example, and suppose we build a model with an
interaction between weight and origin.
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Interactions in linear models
Let's look at what the numerical predictors look like:

##   (Intercept) weight origin2 origin3

## 1           1   3504       0       0

## 2           1   3693       0       0

## 3           1   3436       0       0

## 4           1   3433       0       0

## 5           1   3449       0       0

## 6           1   4341       0       0

##   weight:origin2 weight:origin3 origin

## 1              0              0      1

## 2              0              0      1 78 / 92



Interactions in linear models
##   (Intercept) weight origin2 origin3

## 1           1   1835       1       0

## 2           1   2672       1       0

## 3           1   2430       1       0

## 4           1   2375       1       0

## 5           1   2234       1       0

## 6           1   2123       1       0

##   weight:origin2 weight:origin3 origin

## 1           1835              0      2

## 2           2672              0      2

## 3           2430              0      2

## 4           2375              0      2
79 / 92



Interactions in linear models
##   (Intercept) weight origin2 origin3

## 1           1   2372       0       1

## 2           1   2130       0       1

## 3           1   2130       0       1

## 4           1   2228       0       1

## 5           1   1773       0       1

## 6           1   1613       0       1

##   weight:origin2 weight:origin3 origin

## 1              0           2372      3

## 2              0           2130      3

## 3              0           2130      3

## 4              0           2228      3
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Interactions in linear models
So what is the expected miles per gallon for a car with origin == 1 as
a function of weight?

mpg = β0 + β1 × weight
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Interactions in linear models
Now how about a car with origin == 2?

mpg = β0 + β1 × weight + β2 + β4 × weight
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Interactions in linear models
Now think of the graphical representation of these lines.

For origin == 1 the intercept of the regression line is  and its slope
is .

For origin == 2 the intercept of the regression line is  and its
slope is .

β0

β1

β0 + β2

β1 + β4
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Interactions in linear models
ggplot does this when we map a factor variable to a aesthetic, say
color, and use the geom_smooth method:

Auto %>%

  ggplot(aes(x=weight, y=mpg, color=origin)) 

    geom_point() +

    geom_smooth(method=lm)
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Interactions in linear models
The intercept of the three lines seem to be different, but the slope of
origin == 3 looks different (decreases faster) than the slopes of
origin == 1 and origin == 2 that look very similar to each other.
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Interactions in linear models
Let's fit the model and see how much statistical confidence we can give
to those observations:

## # A tibble: 6 x 5

##   term  estimate std.error statistic

##   <chr>    <dbl>     <dbl>     <dbl>

## 1 (Int…  4.31e+1  1.19      36.4    

## 2 weig… -6.85e-3  0.000342 -20.0    

## 3 orig…  1.12e+0  2.88       0.391  

## 4 orig…  1.11e+1  3.57       3.11   

## 5 weig…  3.58e-6  0.00111    0.00322

## 6 weig… -3.87e-3  0.00154   -2.51   86 / 92



Interactions in linear models
There is still an issue here because this could be the result of a poor fit
from a linear model, it seems none of these lines do a very good job of
modeling the data we have.
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Interactions in linear models
We can again check this for this model:
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Additional issues with linear regression
Multiple linear regression introduces an additional issue that is extremely
important to consider when interpreting the results of these analyses:
collinearity.
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Additional issues with linear regression
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Additional issues with linear regression
In that case, the set of 's that minimize RSS may not be unique, and
therefore our interpretation is invalid.

You can identify this potential problem by regressing predictors onto
each other.

The usual solution is to fit models only including one of the colinear
variables.

β
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Summary
Flexible, but highly biased method for modeling relationships between
variables and deriving predictions for continuous attributes.

We have seen how it is used in the context of EDA and statistical
inference.

Saw important caveats to their application.
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