

CMSC320 Introduction to Data Science: Course Introduction and Overview

Héctor Corrada Bravo

University of Maryland, College Park, USA CMSC320: 2020-01-27

Business First

Course Webpage: http://bit.ly/hcb-ids

What is Data Science?

Data science encapsulates the interdisciplinary activities required to create data-centric artifacts and applications that address specific scientific, socio-political, business, or other questions.

Data

Observable units of information measured or captured from activity of people, places and things.

Data

Observable units of information measured or captured from activity of people, places and things.

Specific Questions

Seeking to understand a phenomenon, natural, social or other

Data

Observable units of information measured or captured from activity of people, places and things.

Specific Questions

Seeking to understand a phenomenon, natural, social or other

Can we formulate specific questions for which an answer posed in terms of patterns observed, tested and or modeled in data is appropriate.

Interdisciplinary Activities

• Formulating a question, assessing the appropriateness of the data and findings used to find an answer require understanding of the specific subject area.

Interdisciplinary Activities

- Formulating a question, assessing the appropriateness of the data and findings used to find an answer require understanding of the specific subject area.
- Deciding on the appropriateness of models and inferences made from models based on the data at hand requires understanding of statistical and computational methods.

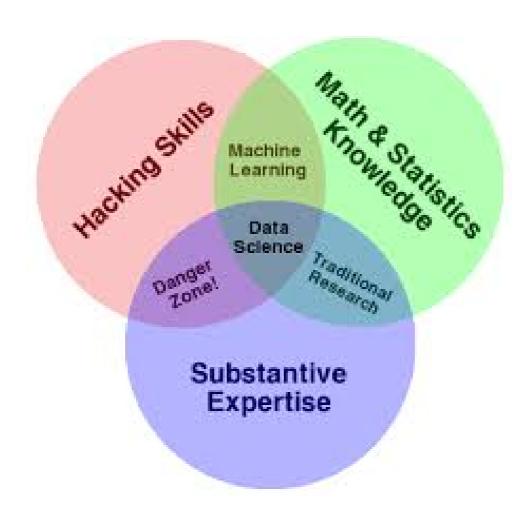
Data-centric artifacts and applications

 Answers to questions derived from data are usually shared and published in meaningful, succint but sufficient, reproducible artifacts (papers, books, movies, comics).

Data-centric artifacts and applications

- Answers to questions derived from data are usually shared and published in meaningful, succint but sufficient, reproducible artifacts (papers, books, movies, comics).
- Going a step further, interactive applications that let others explore data, models and inferences are great.

Data Science



Why Data Science?

The granularity, size and accessibility data, comprising both physical, social, commercial and political spheres has exploded in the last decade or more.

I keep saying that the sexy job in the next 10 years will be statisticians"

Hal Varian, Chief Economist at Google (http://www.nytimes.com/2009/08/06/technology/06stats.html? _r=0)

Why Data Science?

"The ability to take data—to be able to understand it, to process it, to extract value from it, to visualize it, to communicate it—that's going to be a hugely important skill in the next decades, not only at the professional level but even at the educational level for elementary school kids, for high school kids, for college kids."

Hal Varian

(http://www.mckinsey.com/insights/innovation/hal_varian_on_how_the_web_

Why Data Science?

"Because now we really do have essentially free and ubiquitous data. So the complimentary scarce factor is the ability to understand that data and extract value from it."

Hal Varian

(http://www.mckinsey.com/insights/innovation/hal_varian_on_how_the_web_

Large amounts of data produced across many spheres of human activity,

Large amounts of data produced across many spheres of human activity,

Many societal questions may be addressed by characterizing patterns in data.

This can range from unproblematic questions:

 how to dissect a large creative corpora, say music, literature, based on raw characteristics of those works, text, sound and image.

This can range from unproblematic questions:

 how to dissect a large creative corpora, say music, literature, based on raw characteristics of those works, text, sound and image.

To more problematic questions

 analysis of intent, understanding, appreciation and valuation of these creative corpora.

Issues of fairness and transparency in the current era of big data are especially problematic.

 Is data collected representative of population for which inferences are drawn?

Issues of fairness and transparency in the current era of big data are especially problematic.

- Is data collected representative of population for which inferences are drawn?
- Are methods employed learning latent unfair factors from ostensibly fair data?

Issues of fairness and transparency in the current era of big data are especially problematic.

- Is data collected representative of population for which inferences are drawn?
- Are methods employed learning latent unfair factors from ostensibly fair data?
- These are issues that the research community is now starting to address.

In all settings, issues of ethical collection of data, application of models, and deployment of data-centric artifacts are essential to grapple with.

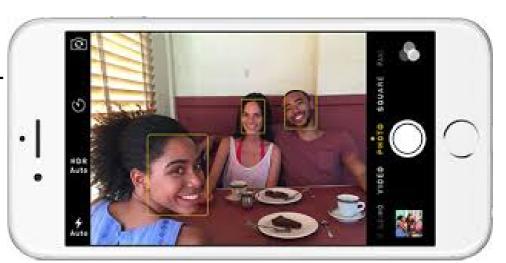
Issues of privacy are equally important.

Data Science in Society: Machine Learning

Self driving cars make use of ML models for sensor processing.

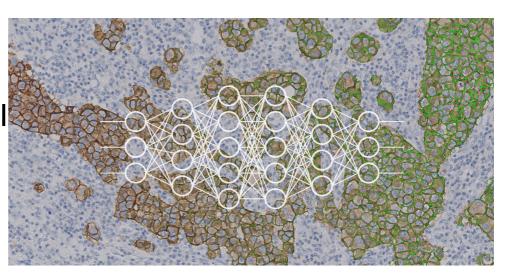
Data Science in Society: Machine Learning

Image recognition software uses ML to identify individuals in photos.



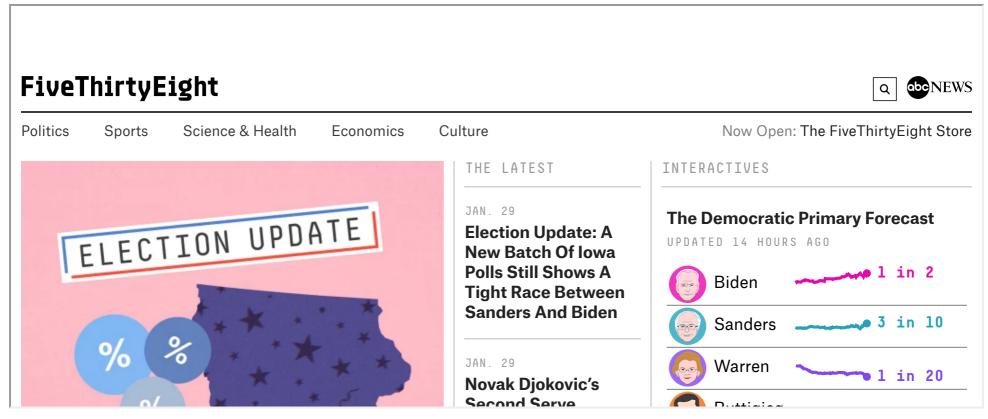
Data Science in Society: Machine Learning

ML models have been applied to medical imaging to yield expert-level prognosis.

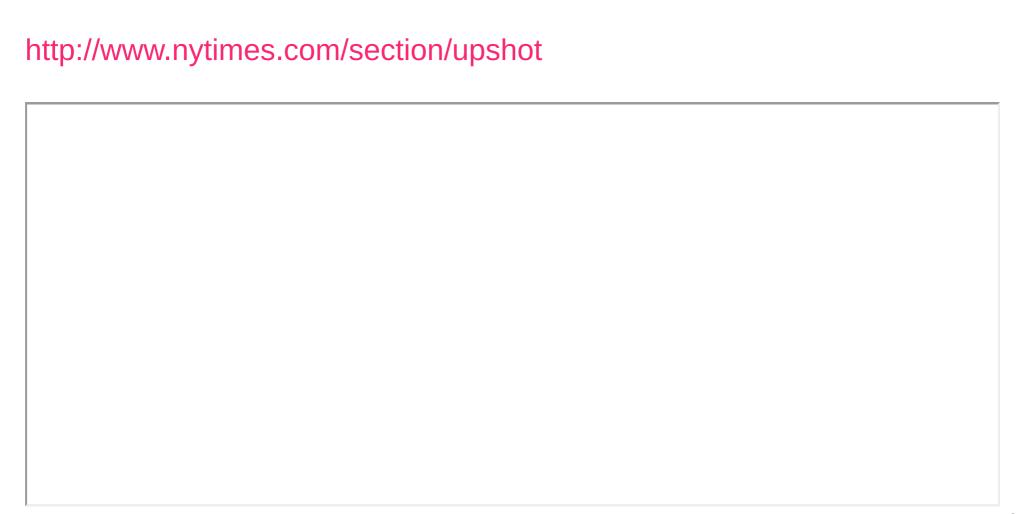


Data Science in Society: Data Journalism

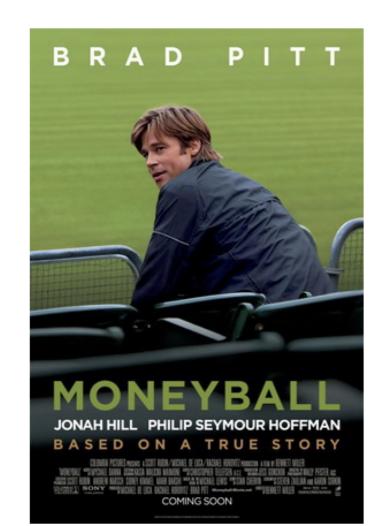
http:://fivethirtyeight.com



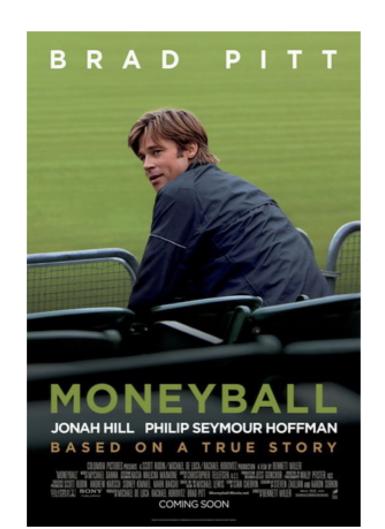
Data Science in Society: Data Journalism



Data Science in Society: Business

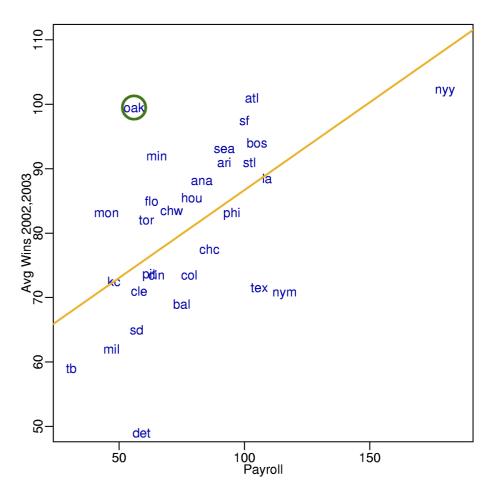


Data Science in Society: Business



Data Science in Society: Business

In the early 2000's the Oakland A's were winning as much as teams with much bigger payrolls by evaluating players using data differently than other teams.



The story of the Netflix Prize

In October 2006 Netflix announced a prize around their movie recommendation engine.

The story of the Netflix Prize

In October 2006 Netflix announced a prize around their movie recommendation engine.

Supervised Machine Learning (ML) task:

- Dataset of users and their ratings, (1,2,3,4 or 5 stars), of movies they have rated.
- Build an ML model that given predicts a specific user's rating to a movie they have not rated.

The story of the Netflix Prize

In October 2006 Netflix announced a prize around their movie recommendation engine.

Supervised Machine Learning (ML) task:

- Dataset of users and their ratings, (1,2,3,4 or 5 stars), of movies they have rated.
- Build an ML model that given predicts a specific user's rating to a movie they have not rated.

They can recommend movies to users if they predict high rating.

Netflix would award \$1M for the first ML system that provided a 10% improvement to their existing system

Existing system had a 0.9514 mean squared error

Leaderboard

Team Name No Grand Prize candidates yet	Best Score	M Improvement
Grand Prize - RMSE <= 0.8563		
How low can he go?	0.9046	4.92
ML@UToronto A	0.9046	4.92
ssorkin	0.9089	4.47
wxyzconsulting.com	0.9103	4.32
The Thought Gang	0.9113	4.21
NIPS Reject	0.9118	4.16
simonfunk	0.9145	3.88
Bozo_The_Clown	0.9177	3.54

Within three weeks, at least 40 teams had improved upon the existing Netflix system.

The top teams were showing improvement over 5%.

Netflix Prize ne | Rules | Leaderboard | Register | Update | Submit

Leaderboard

Team Name No Grand Prize candidates yet	:	Best Score	½ Improvement
Grand Prize - RMSE <= 0.8563			
How low can he go?	1	0.9046	4.92
ML@UToronto A	1	0.9046	4.92
ssorkin	1	0.9089	4.47
wxyzconsulting.com	1	0.9103	4.32
The Thought Gang	1	0.9113	4.21
NIPS Reject		0.9118	4.16
simonfunk	1	0.9145	3.88
Bozo_The_Clown	1	0.9177	3.54

This course will cover basics of how to represent, model and communicate about data and data analyses using the R and/or Python environments for Data Science

Area 0: Tools and skills

- Area 0: Tools and skills
- Area 1: Data types and operations

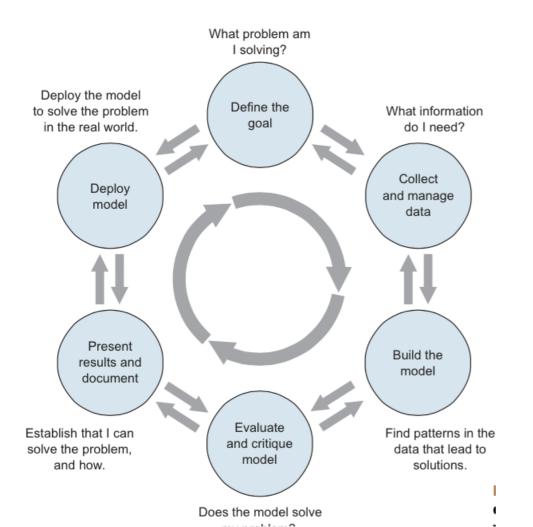
- Area 0: Tools and skills
- Area 1: Data types and operations
- Area 2: Data wrangling

- Area 0: Tools and skills
- Area 1: Data types and operations
- Area 2: Data wrangling
- Area 3: Modeling

- Area 0: Tools and skills
- Area 1: Data types and operations
- Area 2: Data wrangling
- Area 3: Modeling
- Area 4: Applications

- Area 0: Tools and skills
- Area 1: Data types and operations
- Area 2: Data wrangling
- Area 3: Modeling
- Area 4: Applications
- Area 5: Communication

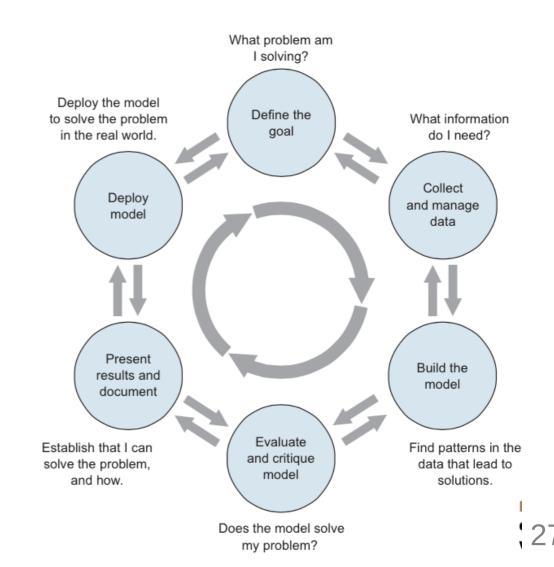
General Workflow



Zumel and Mount

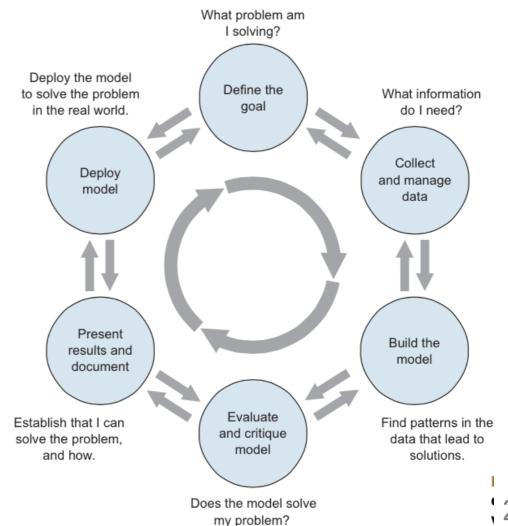
Defining the goal

- What is the question/problem?
- Who wants to answer/solve it?
- What do they know/do now?
- How well can we expect to answer/solve it?
- How well do they want us to answer/solve it?



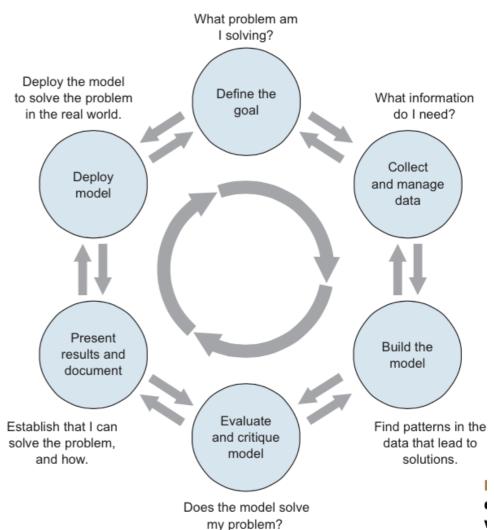
Data collection and Management

- What data is available?
- Is it good enough?
- Is it enough?
- What are sensible measurements to derive from this data? Units, transformations, rates, ratios, etc.



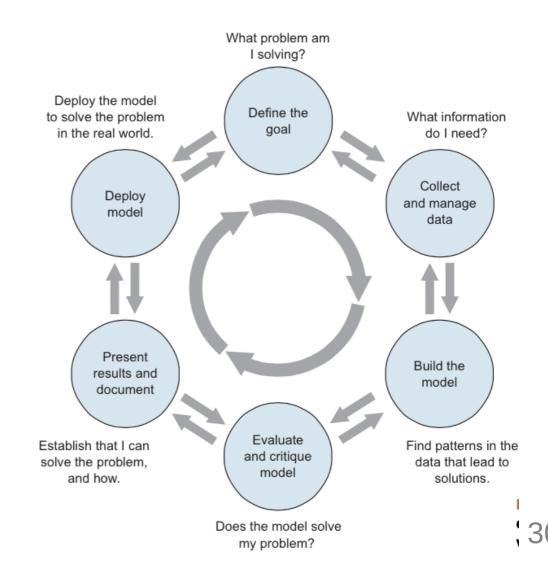
Modeling

- What kind of problem is it? E.g., classification, clustering, regression, etc.
- What kind of model should I use?
- Do I have enough data for it?
- Does it really answer the question?



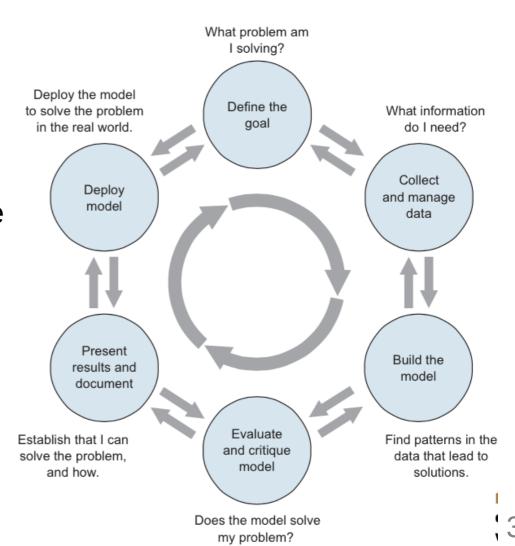
Model evaluation

- Did it work? How well?
- Can I interpret the model?
- What have I learned?



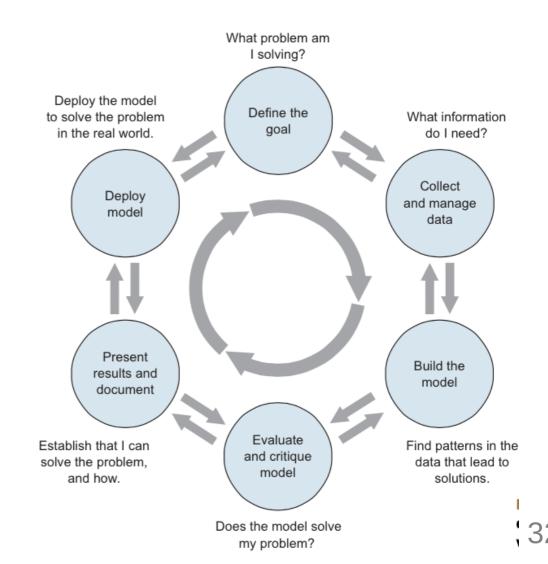
Presentation

- Again, what are the measurements that tell the real story?
- How can I describe and visualize them effectively?



Deployment

- Where will it be hosted?
- Who will use it?
- Who will maintain it?



An Illustrative Analysis

http://fivethirtyeight.com has a clever series of articles on the types of movies different actors make in their careers:

https://fivethirtyeight.com/tag/hollywood-taxonomy/

I'd like to do a similar analysis. Let's do this in order:

- 1) Let's do this analysis for Diego Luna
- 2) Let's use a clustering algorithm to determine the different types of movies they make
- 3) Then, let's write an application that performs this analysis for any actor and test it with Gael García Bernal

Gathering data

Movie ratings

For this analysis we need to get the movies Diego Luna was in, along with their Rotten Tomatoes ratings. For that we scrape this webpage: https://www.rottentomatoes.com/celebrity/diego_luna.

Rating	Title	Credit	BoxOffice	Year
11	Berlin, I Love You	Drag Queen		2019
95	If Beale Street Could Talk	Pedrocito	_	2019
60	A Rainy Day in New York	Actor		2019
4	Flatliners	Ray	\$16.9M	2017

Movie budgets and revenue

For the movie budgets and revenue data we scrape this webpage:

http://www.the-numbers.com/movie/budgets/all

This is part of what we have for that table after scraping and cleaning up:

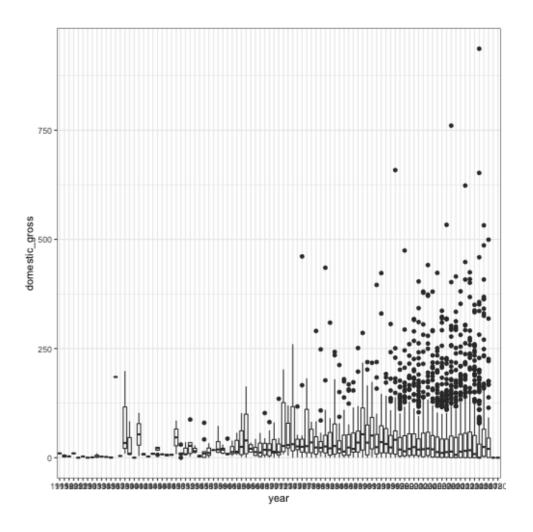
release_date	movie	production_budget	domestic_gross	worldwide_gr
2009-12-18	Avatar	425	760.50762	2783.9
2015-12-18	Star Wars Ep. VII: The Force Awakens	306	936.66223	2058.6 35 / 50
	Dirates of			00 / 00

Movie budgets and revenue

Now we have data for 5358 movies, including its release date, title, production budget, US domestic and worlwide gross earnings. The latter three are in millions of U.S. dollars.

Movie budgets and revenue

One thing we might want to check is if the budget and gross entries in this table are inflation adjusted or not.



Manipulating the data

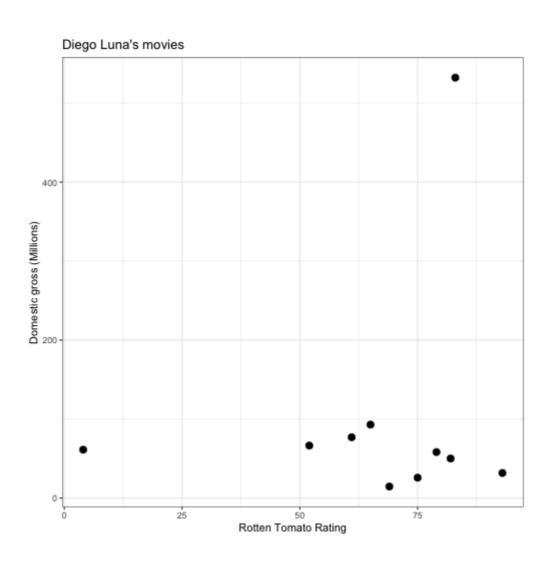
Next, we combine the datasets we obtained to get closer to the data we need to make the plot we want.

We combine the two datasets using the movie title, so that the end result has the information in both tables for each movie.

Rating	Title	Credit	BoxOffice	Year	release_date	production_budg
4	Flatliners	Ray	\$16.9M	2017	1990-08-10	26
	Rogue	Captain				
83	One: A Star	Cassian	\$532.2M	2016	2016-12-16	200
	Wars Story	Andor				38 / 50

The Deal

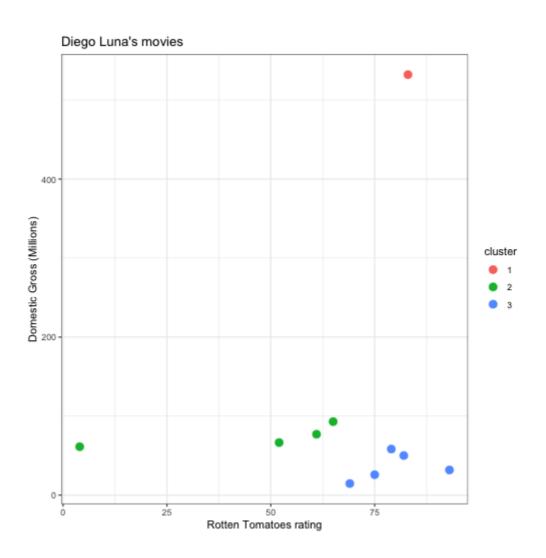
Visualizing the data



Modeling data

Use a clustering algorithm to partition Diego Luna's movies based on rating and domestic gross.

Title	Rating	domestic_gross	cluster
Rogue One: A Star Wars Story	83	532.17732	1
Flatliners	4	61.30815	2
Elysium	65	93.05012	2
Contraband	52	66.52800	2
The Terminal	61	77.07396	2
The Book of Life	82	50.15154	3

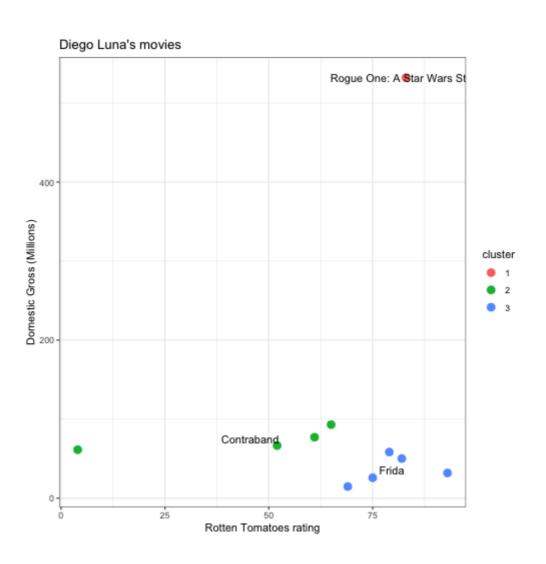


To make the plot and clustering more interpretable, let's annotate the graph with some movie titles.

• In the k-means algorithm, each group of movies is represented by an average rating and an average domestic gross.

To make the plot and clustering more interpretable, let's annotate the graph with some movie titles.

- In the k-means algorithm, each group of movies is represented by an average rating and an average domestic gross.
- Find the movie in each group that is closest to the average and use that movie title to annotate each group in the plot.



While not a tremendous success, we decide we want to carry on with this analysis. We would like to do this for other actors' movies.

One of the big advantages of using R and Python is that we can write a piece of code as functions that takes an actor's name as input, and reproduces the steps of this analysis for that actor.

For our analysis, this function must do the following:

- 1. Scrape movie ratings from Rotten Tomatoes
- 2. Clean up the scraped data
- 3. Join with the budget data we downloaded previously
- 4. Perform the clustering algorithm
- 5. Make the final plot

With this in mind, we can write functions for each of these steps, and then make one final function that puts all of these together.

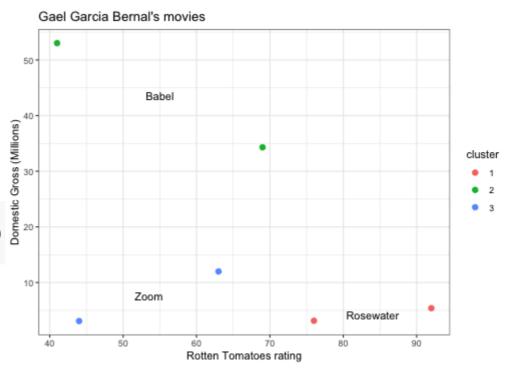
For instance, let's write the scraping function. It will take an actor's name and output the scraped data.

Let's test it with Gael García Bernal:

Rating	Title	Credit	BoxOffice	Year
No Score Yet	It Must Be Heaven	Actor		2019
No Score Yet	Lorena, Light-Footed Woman (Lorena, la de pies ligeros)	Executive Producer		2019

We can then write functions for each of the steps we did with Diego Luna before.

analyze_actor("Gael Garcia Bernal") with Diego Luna before.



Making analyses accessible

Now that we have written a function to analyze an actor's movies, we can make these analyses easier to produce by creating an interactive application that wraps our new function. The shiny R package makes creating this type of application easy.

https://hcorrada.shinyapps.io/movie_app/

Summary

In this analysis we saw examples of the common steps and operations in a data analysis:

- 1) Data ingestion: we scraped and cleaned data from publicly accessible sites
- 2) Data manipulation: we integrated data from multiple sources to prepare our analysis

Summary

- 3) Data visualization: we made plots to explore patterns in our data
- 4) Data modeling: we made a model to capture the grouping patterns in data automatically, using visualization to explore the results of this modeling
- 5) Publishing: we abstracted our analysis into an application that allows us and others to perform this analysis over more datasets and explore the result of modeling using a variety of parameters