
Data Analysis with Geometry
A common situation:

an outcome attribute (variable) , and
one or more independent covariate or predictor attributes 

.

One usually observes these variables for multiple "instances" (or
entities).

Y

X1, … ,Xp
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Data Analysis with Geometry
One may be interested in various things:

What effects do the covariates  have on the outcome ?
How well can we quantify these effects?
Can we predict outcome  using covariates ?, etc...

Xi Y

Y Xi
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Data Analysis with Geometry

Motivating Example: Credit Analysis

default student balance income

No No 729.5265 44361.625

No Yes 817.1804 12106.135

No No 1073.5492 31767.139

No No 529.2506 35704.494

No No 785.6559 38463.496

No Yes 919.5885 7491.559
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Data Analysis with Geometry
Task predict account default

What is the outcome ?
What are the predictors ?

Y

Xj
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From data to feature vectors
The vast majority of ML algorithms we see in class treat instances as
"feature vectors".

We can represent each instance as a vector in Euclidean space 
.⟨x1, … ,xp, y⟩
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in particular, categorical variables become numeric (e.g., one-hot
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From data to feature vectors
Here is the same credit data represented as a matrix of feature vectors

default student balance income

1 0 1717.0716 38408.89

1 1 1983.2345 25687.93

-1 1 883.1573 18213.08

1 0 1975.6530 38221.84

-1 0 0.0000 32809.33

-1 0 528.0893 46389.34
6 / 22

Technical notation
Observed values will be denoted in lower case. So  means the th
observation of the random variable .

Matrices are represented with bold face upper case. For example 
will represent all observed predictors.

 (or ) will usually mean the number of observations, or length of 
.  will be used to denote which observation and  to denote which
covariate or predictor.

xi i

X

X

N n Y

i j
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Technical notation
Vectors will not be bold, for example  may mean all predictors for
subject , unless it is the vector of a particular predictor .
All vectors are assumed to be column vectors, so the -th row of 
will be , i.e., the transpose of .

xi
i xj

i X

x′
i xi
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Geometry and Distances
Now that we think of instances as vectors we can do some interesting
operations.

Let's try a first one: define a distance between two instances using
Euclidean distance

d(x1,x2) =


 
⎷

p

∑
j=1

(x1j − x2j)
2
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Geometry and Distances

K-nearest neighbor classi�cation

Now that we have a distance between instances we can create a
classifier. Suppose we want to predict the class for an instance .

K-nearest neighbors uses the closest points in predictor space predict .

 represents the -nearest points to . How would you use  to
make a prediction?

x

Y

Ŷ = ∑
xk∈Nk(x)

yk.
1

k

Nk(x) k x Ŷ

10 / 22

Geometry and Distances
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Geometry and Distances

Inductive bias

The assumptions we make about our data that allow us to make
predictions.

In KNN, our inductive bias is that points that are nearby will be of the
same class.
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Geometry and Distances
Parameter  is a hyper-parameter, it's value may affect prediction
accuracy significantly.

Question: which situation may lead to overfitting, high or low values of 
? Why?

K

K
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Which of these two features
will affect distance the most?

The importance of transformations
Feature scaling is an important issue in distance-based methods.
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Quick vector algebra review
A (real-valued) vector is just an array of real values, for instance 

 is a three-dimensional vector.

Vector sums are computed pointwise, and are only defined when
dimensions match, so

.

In general, if  then  for all vectors .

x = ⟨1, 2.5, −6⟩

⟨1, 2.5, −6⟩ + ⟨2, −2.5, 3⟩ = ⟨3, 0, −3⟩

c = a + b cd = ad + bd d
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Quick vector algebra review
Vector addition can be viewed geometrically as taking a vector , then
tacking on  to the end of it; the new end point is exactly .

a

b c
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Quick vector algebra review
Scalar Multiplication: vectors can be scaled by real values;

In general, 

2⟨1, 2.5, −6⟩ = ⟨2, 5, −12⟩

ax = ⟨ax1, ax2, … , axp⟩
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Quick vector algebra review
The norm of a vector , written  is its length.

Unless otherwise specified, this is its Euclidean length, namely:

x ∥x∥

∥x∥ =


 
⎷

p

∑
j=1

x2
j
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Quick vector algebra review

Quiz

Write Euclidean distance of vectors  and  as a vector normu v
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Quick vector algebra review
The dot product, or inner product of two vectors  and  is defined as

A useful geometric interpretation of the inner product  is that it gives
the projection of  onto  (when ).

u v

u′v =
p

∑
j=1

uivi

v′u

v u ∥u∥ = 1
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The curse of dimensionality
Distance-based methods like KNN can be problematic in high-
dimensional problems

Consider the case where we have many covariates. We want to use -
nearest neighbor methods.

Basically, we need to define distance and look for small multi-
dimensional "balls" around the target points.

With many covariates this becomes difficult.

k
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Summary
We will represent many ML algorithms geometrically as vectors
Vector math review
K-nearest neighbors
The curse of dimensionality
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Geometry and Distances
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K

K
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