
Unsupervised Learning
Unsupervised data: characterize patterns in predictor space where
observation measurements are represented.

Mathematically, characterize  over -dimensional predictor space.

Clustering methods assume that this space  can be partitioned into
subspaces containing "similar" observations.
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Unsupervised Learning: Dimensionality Reduction
Dimensionality reduction: assume observations can be represented in a
space with dimension much lower than .

There are two general strategies for dimensionality reduction:

data transformations into spaces of smaller dimension that capture
global properties of a data set ,

data embeddings into lower dimensional spaces that retain local
properties of a data set .

We will only see the first.
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Principal Component Analysis
Principal Component Analysis (PCA) is a dimensionality reduction
method.

Goal: embed data in high dimensional space (e.g., observations with a
large number of variables), onto a small number of dimensions.
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Also be helpful in regression (linear or logistic) where we can transform
input variables into a smaller number of predictors for modeling.
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Principal Component Analysis
Mathematically, the PCA problem is:

Given:

Data set , where  is the vector of  variable
values for the -th observation.

Return:

Matrix  of linear transformations that retain maximal
variance.

{x1, x2, … , xn} xi p

i

[ϕ1,ϕ2, … ,ϕp]
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Principal Component Analysis
Think of the first vector  as a linear transformation that embeds
observations into 1 dimension:

where  is selected so that the resulting dataset  has
maximum variance.

ϕ1

Z1 = ϕ11X1 + ϕ21X2 + ⋯ + ϕp1Xp

ϕ1 {z1, … , zn}
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Principal Component Analysis
In order for this to make sense mathematically:

data has to be centered, i.e., each  has mean equal to zero

transformation vector  has to be normalized, i.e., .
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Principal Component Analysis
Find  by solving optimization problem:ϕ1

max
ϕ11,ϕ21,…,ϕp1

n

∑
i=1

(
p

∑
j=1

ϕj1xij)
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s. t.
p
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n
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Principal Component Analysis
Conceptually: maximize variance but subject to normalization constraint.

The second transformation  is obtained next solving a similar problem
with the added constraint that  is orthogonal to .

ϕ2

ϕ2 ϕ1
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Principal Component Analysis
Taken together  define a pair of linear transformations of the data
into 2 dimensional space.

[ϕ1,ϕ2]

Zn×2 = Xn×p[ϕ1,ϕ2]p×2
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Principal Component Analysis
Each of the columns of the  matrix are called Principal Components.

The units of the PCs are meaningless.

In particular, comparing numbers across PCs doesn't make
mathematical sense.

Z
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Principal Component Analysis
In practice, may also use a scaling transformation on the variables  to
have unit variance.

In general, if variables  are measured in different units (e.g, miles vs.
liters vs. dollars), variables should be scaled to have unit variance.

Conversely, if they are all measured in the same units, they should be
scaled.

Xj

Xj
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Mortgage affordability data
embedded into the first two
principal components.

Principal Component Analysis
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Principal Component Analysis
A natural question that arises: How many PCs should we consider in
post-hoc analysis?

One result of PCA is a measure of the variance corresponding to each
PC relative to the total variance of the dataset.

From that calculate the percentage of variance explained for the -th
PC:
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We can use this measure to
choose number of PCs in an
ad-hoc manner. In our case,
using more than 10 or so
PCs does not add
information.

Principal Component Analysis
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Principal Component Analysis
A useful rule of thumb:

If no apparent patterns in first couple of PCs, stop!
Otherwise, look at other PCs using PVE as guide.
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Principal Component Analysis
A useful rule of thumb:

If no apparent patterns in first couple of PCs, stop!
Otherwise, look at other PCs using PVE as guide.

There are bootstrap based methods to perform a statistically guided
selection of the number of PCs.

However, there is no commonly agreed upon method for choosing
number of PCs used in practice, and methods are somewhat ad-hoc.
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Solving the PCA
The Principle Component solutions  are obtained from the singular
value decomposition of observation matrix 

ϕ

Xn×p = UDV T
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The Principle Component solutions  are obtained from the singular
value decomposition of observation matrix 

Matrices  and  are orthogonal matrices,  and 

Called the left and right singular vectors respectively.

 is a diagonal matrix with . These are referred
to as the singular values.

ϕ

Xn×p = UDV T

U V U TU = I V TV = I

D d1 ≥ d2 ≥ … dp ≥ 0
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Solving the PCA
Using our previous notation  is the transformation matrix 

.

Principal components  are given by the columns of . Since  is
orthogonal,  equals the variance of the th PC.

V

V = [ϕ1,ϕ2, ⋯ ,ϕp]

Z UD U

d2
j j
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Solving the PCA
From this observation we also see that we can write original
observations  in terms of PCs  and transformations .

Specifically

.

xi z ϕ

xi = zi1ϕ1 + zi2ϕ2 + ⋯ + zipϕp
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Solving the PCA
We can think of the  vectors as a basis over which we can represent
original observations .

For this reason, another useful post-hoc analysis is to plot the
transformation vectors .

ϕj

i

ϕ1,ϕ2, …
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Here we plot the mean time series (since we center observations 
before performing the embedding) along with the first three  vectors.

X
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Multidimensional Scaling
Multidimensional scaling is a similar approach to PCA but looks at the
task in a little different manner.

Given observations  in  dimensions, let  be the distance
between observations  and . We may also use this algorithm given
distances initially instead of  dimensional observations.

x1, … ,xN p dij
i j

p
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Multidimensional Scaling
Multidimensional scaling is a similar approach to PCA but looks at the
task in a little different manner.

Given observations  in  dimensions, let  be the distance
between observations  and . We may also use this algorithm given
distances initially instead of  dimensional observations.

Multidimensional Scaling (MDS) seeks to find embeddings  of
 dimensions for which Euclidean distance (in  dimensional space) is

close to the input distances .

x1, … ,xN p dij
i j

p

z1, … , zN
k k

dij
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Multidimensional Scaling
In least squares MDS, we can do this by minimizing

A gradient descent algorithm is used to minimize this function.

SM(z1, … , zN) = ∑
i≠j

(dij − ∥zi − zj∥)2
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Multidimensional Scaling
A related method that tends to better capture small distances is given by
the Sammon mapping:

SSm
(z1, … , zN) = ∑

i≠j

(dij − ∥zi − zj∥)2

dij
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Summary
Principal Component Analysis is a conceptually simple but powerful EDA
tool. It is very useful at many stages of analyses.

PCA interpretation can be very ad-hoc, however. It is part of large set of
unsupervised methods based on matrix decompositions, including
Kernel PCA, Non-negative Matrix Factorization and others.

Embedding methods seek to capture local properties of observations.
Popular recent methods are -SNE and UMAP.t
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Unsupervised Learning: Dimensionality Reduction
Dimensionality reduction: assume observations can be represented in a
space with dimension much lower than .

There are two general strategies for dimensionality reduction:

data transformations into spaces of smaller dimension that capture
global properties of a data set ,

data embeddings into lower dimensional spaces that retain local
properties of a data set .

We will only see the first.
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Principal Component Analysis
In order for this to make sense mathematically:

data has to be centered, i.e., each  has mean equal to zero

transformation vector  has to be normalized, i.e., .
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Principal Component Analysis
Find  by solving optimization problem:ϕ1
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Principal Component Analysis
Conceptually: maximize variance but subject to normalization constraint.

The second transformation  is obtained next solving a similar problem
with the added constraint that  is orthogonal to .
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Principal Component Analysis
Taken together  define a pair of linear transformations of the data
into 2 dimensional space.
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Each of the columns of the  matrix are called Principal Components.
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Principal Component Analysis
In practice, may also use a scaling transformation on the variables  to
have unit variance.

In general, if variables  are measured in different units (e.g, miles vs.
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Mortgage affordability data
embedded into the first two
principal components.
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Principal Component Analysis
A natural question that arises: How many PCs should we consider in
post-hoc analysis?

One result of PCA is a measure of the variance corresponding to each
PC relative to the total variance of the dataset.

From that calculate the percentage of variance explained for the -th
PC:
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We can use this measure to
choose number of PCs in an
ad-hoc manner. In our case,
using more than 10 or so
PCs does not add
information.

Principal Component Analysis
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Solving the PCA
We can think of the  vectors as a basis over which we can represent
original observations .

For this reason, another useful post-hoc analysis is to plot the
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Here we plot the mean time series (since we center observations 
before performing the embedding) along with the first three  vectors.
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Multidimensional Scaling
Multidimensional scaling is a similar approach to PCA but looks at the
task in a little different manner.

Given observations  in  dimensions, let  be the distance
between observations  and . We may also use this algorithm given
distances initially instead of  dimensional observations.
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In least squares MDS, we can do this by minimizing

A gradient descent algorithm is used to minimize this function.
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Multidimensional Scaling
A related method that tends to better capture small distances is given by
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Summary
Principal Component Analysis is a conceptually simple but powerful EDA
tool. It is very useful at many stages of analyses.

PCA interpretation can be very ad-hoc, however. It is part of large set of
unsupervised methods based on matrix decompositions, including
Kernel PCA, Non-negative Matrix Factorization and others.
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