
Unsupervised Learning
So far we have seen "Supervised Methods" where our goal is to analyze
a response (or outcome) based on various predictors.

In many cases, especially for Exploratory Data Analysis, we want
methods to extract patterns on variables without analyzing a specific
response.

Methods for the latter case are called "Unsupervised Methods".
Examples are Principal Component Analysis and Clustering.
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Unsupervised Learning
Interpretation of these methods is much more subjective than in
Supervised Learning.

For example: if we want to know if a given predictor is related to
response, we can perform statistical inference using hypothesis testing.
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Unsupervised Learning
If we want to know which predictors are useful for prediction: use cross-
validation to do model selection.

Finally, if we want to see how well we can predict a specific response, we
can use cross-validation to report on test error.
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Unsupervised Learning
In unsupervised methods, there is no similar clean evaluation
methodology.

Nonetheless, they can be very useful methods to understand data at
hand.
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Motivating Example
Time series dataset of mortgage affordability as calculated and
distributed by Zillow: https://www.zillow.com/research/data/.

The dataset consists of monthly mortgage affordability values for 81
counties with data from 1979 to 2017.
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Motivating Example
"To calculate mortgage affordability, we first calculate the
mortgage payment for the median-valued home in a
metropolitan area by using the metro-level Zillow Home Value
Index for a given quarter and the 30-year fixed mortgage
interest rate during that time period, provided by the Freddie
Mac Primary Mortgage Market Survey (based on a 20 percent
down payment)."
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Motivating Example
"Then, we consider what portion of the monthly median
household income (U.S. Census) goes toward this monthly
mortgage payment. Median household income is available with
a lag. "
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Can we partition counties
into groups of counties with
similar value trends across
time?

Motivating Example
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Preliminaries
In "Supervised Learning" we were concerned with estimates that
minimize some error function relative to the outcome of interest :Y

μ(x) = arg min
β

EY |XL(Y ,β)
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Preliminaries
In order to do this, explicitly or not, the methods we were using would be
concerned with properties of the conditional probability distribution 

,

without concerning itself with probability distribution  of the
predictors themselves.

p(Y |X)

p(X)
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Preliminaries
In unsupervised learning, we are interested in properties of .

In our example, what can we say about the distribution of home value
time series?

Since the dimensionality of  can be large, unsupervised learning
methods seek to find structured representations of  that would be
possible to estimate.

p(X)

p(X)
p(X)
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Preliminaries
In clustering we assume that predictor space is partitioned and that 

 is defined over those partitions.

In dimensionality reduction we assume that  is really defined over a
space (manifold) of smaller dimension. We will start studying clustering
first.

p(X)

p(X)
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Cluster Analysis
The high-level goal of cluster analysis is to organize objects
(observations) that are similar to each other into groups.

We want objects within a group to be more similar to each other than
objects in different groups.
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Cluster Analysis
The high-level goal of cluster analysis is to organize objects
(observations) that are similar to each other into groups.

We want objects within a group to be more similar to each other than
objects in different groups.

Central to this high-level goal is how to measure the degree of similarity
between objects.

A clustering method then uses the similarity measure provided to it to
group objects into clusters.
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Cluster Analysis
Result of the k-means algorithm
partitioning the data into 9 clusters.

The darker series within each
cluster shows the average time
series within the cluster.
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Dissimilarity-based Clustering
For certain algorithms, instead of similarity we work with dissimilarity,
often represented as distances.

When we have observations defined over attributes, or predictors, we
define dissimilarity based on these attributes.
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Dissimilarity-based Clustering
Given measurements  for  observations over 

 predictors.

Suppose we define a dissimilarity , we can then define a
dissimilarity between objects as

xij i = 1, … ,N
j = 1, … , p

dj(xij,xi′j)

d(xi,xi′) =
p

∑
j=1

dj(xij,xi′j)
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Dissimilarity-based Clustering
In the k-means algorithm, and many other algorithms, the most common
usage is squared distance

We can use different dissimilarities, for example

which may affect our choice of clustering algorithm later on.

dj(xij,xi′j) = (xij − xi′j)
2

dj(xij,xi′j) = |xij − xi′j|
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Dissimilarity-based Clustering
For categorical variables, we could set

dj(xij,xi′j) =
⎧
⎨⎩

0 if xij = xi′j

1 o.w.
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Dissimilarity-based Clustering
If the values the categorical variable have an intrinsic similarity

Generalize using symmetric matrix  with elements

,
 and
 otherwise.

This may of course lead to a dissimilarity that is not a proper distance.

L

Lrr′ = Lr′r

Lrr = 0
Lrr′ ≥ 0
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K-means Clustering
A commonly used algorithm to perform clustering is the K-means
algorithm.

It is appropriate when using squared Euclidean distance as the measure
of object dissimilarity.

d(xi,xi′) =
p

∑
j=1

(xij − xi′j)
2

= ∥xi − xi′∥
2
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K-means Clustering
K-means partitions observations into  clusters, with  provided as a
parameter.

Given some clustering, or partition, , denote cluster assignment of
observation  to cluster  is denoted as .

K K

C

xi k ∈ {1, … ,K} C(i) = k
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K-means Clustering
K-means partitions observations into  clusters, with  provided as a
parameter.

Given some clustering, or partition, , denote cluster assignment of
observation  to cluster  is denoted as .

K-means minimizes this clustering criterion:

K K

C

xi k ∈ {1, … ,K} C(i) = k

W(C) =
K

∑
k=1

∑
i: C(i)=k

∑
i′: C(i′)=k

∥xi − xi′∥
21

2
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K-means Clustering
This is equivalent to minimizing

with:

 is the average of predictor  over the observations assigned to
cluster ,

 is the number of observations assigned to cluster 

W(C) =
K

∑
k=1

Nk ∑
i: C(i)=k

∥xi − x̄k∥21

2

x̄k = (x̄k1, … , x̄kp)
x̄kj j

k

Nk k
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K-means Clustering

Minimize the total distance given by each observation to the mean
(centroid) of the cluster to which the observation is assigned.

W(C) =
K

∑
k=1

Nk ∑
i: C(i)=k

∥xi − x̄k∥21

2
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K-means Clustering
An iterative algorithm is used to minimize this criterion

1. Initialize by choosing  observations as centroids 
2. Assign each observation  to the cluster with the nearest centroid, i.e.,

set 
3. Update centroids 
4. Iterate steps 1 and 2 until convergence

K m1,m2, … ,mk

i

C(i) = arg min1≤k≤K ∥xi − mk∥2

mk = x̄k
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Here we illustrate the
k-means algorithm
over four iterations on
our example data
with .

K-means Clustering

K = 4
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K-means Clustering
Criterion  is reduced in each iteration so the algorithm is assured
to converge.

Not a convex criterion, the clustering we obtain may not be globally
optimal.

In practice, the algorithm is run with multiple initializations (step 0) and
the best clustering achieved is used.

W(C)
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K-means Clustering
Also, selection of observations as centroids can be improved using the
K-means++ algorithm:

1. Choose an observation as centroid  uniformly at random
2. To choose centroid , compute for each observation  not chosen

as a centroid the distance to the nearest centroid 

3. Set centroid  to an observation randomly chosen with probability 

4. Iterate steps 1 and 2 until  centroids are chosen

m1

mk i

di = min1≤l<k ∥xi − ml∥2

mk

edi

∑i′ e
d

i′

K
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Choosing the number of clusters
The number of parameters must be determined before running the K-
means algorithm.

There is no clean direct method for choosing the number of clusters to
use in the K-means algorithm (e.g. no cross-validation method)
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Looking at criterion 
 alone is not

sufficient as the
criterion will become
smaller as the value
of  is reduced.

Choosing the number of clusters

W(C)

K
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Choosing the number of clusters
We can use properties of this plot for ad-hoc selection.

Suppose there is a true underlying number  of clusters in the data,

improvement in the  statistic will be fast for values of 

slower for values of .

K∗

WK(C)
K ≤ K∗

K > K∗
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Choosing the number of clusters
Improvement in the  statistic will be fast for values of 

In this case, there will be a cluster which will contain observations
belonging to two of the true underlying clusters, and therefore will have
poor within cluster similarity.

As  is increased, observations may then be separated into separate
clusters, providing a sharp improvement in the  statistic.

WK(C) K ≤ K∗

K

WK(C)
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Choosing the number of clusters
Improvement in the  statistic will be slower for values of 

In this case, observations belonging to a single true cluster are split into
multiple cluster, all with generally high within-cluster similarity,

Splitting these clusters further will not improve the  statistic very
sharply.

WK(C)
K > K∗

WK(C)
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The curve will
therefore have an
inflection point
around .

Choosing the number of clusters

K∗
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Choosing the number of clusters
The gap statistic is used to identify the inflection point in the curve.

It compares the behavior of the  statistic based on the data with
the behavior of the  statistic for data generated uniformly at
random over the range of the data.

Chooses the  that maximizes the gap between these two 
curves.

WK(C)
WK(C)

K WK(C)
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For this dataset, the
gap statistic suggests
there is no clear
cluster structure and
therefore  is
the best choice.

A choice of  is
also appropriate.

Choosing the number of clusters

K = 1

K = 4
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Summary
Clustering methods are intuitive methods useful to understand structure
within unlabeled observations.

K-means is a frequently used, easy to implement and interpret algorithm
for clustering.

38 / 38

Introduction to Data Science:
Clustering

Héctor Corrada Bravo

University of Maryland, College Park, USA
CMSC320: 2020-04-28

https://www.zillow.com/research/data/


Unsupervised Learning
So far we have seen "Supervised Methods" where our goal is to analyze
a response (or outcome) based on various predictors.

In many cases, especially for Exploratory Data Analysis, we want
methods to extract patterns on variables without analyzing a specific
response.

Methods for the latter case are called "Unsupervised Methods".
Examples are Principal Component Analysis and Clustering.

1 / 38



Unsupervised Learning
Interpretation of these methods is much more subjective than in
Supervised Learning.

For example: if we want to know if a given predictor is related to
response, we can perform statistical inference using hypothesis testing.

2 / 38



Unsupervised Learning
If we want to know which predictors are useful for prediction: use cross-
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The dataset consists of monthly mortgage affordability values for 81
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Motivating Example
"To calculate mortgage affordability, we first calculate the
mortgage payment for the median-valued home in a
metropolitan area by using the metro-level Zillow Home Value
Index for a given quarter and the 30-year fixed mortgage
interest rate during that time period, provided by the Freddie
Mac Primary Mortgage Market Survey (based on a 20 percent
down payment)."
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Motivating Example
"Then, we consider what portion of the monthly median
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Can we partition counties
into groups of counties with
similar value trends across
time?

Motivating Example
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Preliminaries
In "Supervised Learning" we were concerned with estimates that
minimize some error function relative to the outcome of interest :Y

μ(x) = arg min
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EY |XL(Y , β)
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Preliminaries
In unsupervised learning, we are interested in properties of .
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time series?
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p(X)
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Preliminaries
In clustering we assume that predictor space is partitioned and that 

 is defined over those partitions.

In dimensionality reduction we assume that  is really defined over a
space (manifold) of smaller dimension. We will start studying clustering
first.

p(X)

p(X)
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Cluster Analysis
The high-level goal of cluster analysis is to organize objects
(observations) that are similar to each other into groups.

We want objects within a group to be more similar to each other than
objects in different groups.
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Cluster Analysis
Result of the k-means algorithm
partitioning the data into 9 clusters.

The darker series within each
cluster shows the average time
series within the cluster.
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Dissimilarity-based Clustering
For certain algorithms, instead of similarity we work with dissimilarity,
often represented as distances.

When we have observations defined over attributes, or predictors, we
define dissimilarity based on these attributes.
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Dissimilarity-based Clustering
In the k-means algorithm, and many other algorithms, the most common
usage is squared distance

We can use different dissimilarities, for example

which may affect our choice of clustering algorithm later on.

dj(xij,xi′j) = (xij − xi′j)
2

dj(xij,xi′j) = |xij − xi′j|
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Dissimilarity-based Clustering
For categorical variables, we could set

dj(xij,xi′j) =
⎧
⎨⎩

0 if xij = xi′j

1 o.w.
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Dissimilarity-based Clustering
If the values the categorical variable have an intrinsic similarity

Generalize using symmetric matrix  with elements

,
 and
 otherwise.

This may of course lead to a dissimilarity that is not a proper distance.

L

Lrr′ = Lr′r

Lrr = 0

Lrr′ ≥ 0
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K-means Clustering
A commonly used algorithm to perform clustering is the K-means
algorithm.

It is appropriate when using squared Euclidean distance as the measure
of object dissimilarity.

d(xi,xi′) =
p

∑
j=1

(xij − xi′j)
2

= ∥xi − xi′∥
2
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K-means Clustering
K-means partitions observations into  clusters, with  provided as a
parameter.

Given some clustering, or partition, , denote cluster assignment of
observation  to cluster  is denoted as .

K K

C

xi k ∈ {1, … , K} C(i) = k
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K-means Clustering
K-means partitions observations into  clusters, with  provided as a
parameter.

Given some clustering, or partition, , denote cluster assignment of
observation  to cluster  is denoted as .

K-means minimizes this clustering criterion:

K K

C

xi k ∈ {1, … , K} C(i) = k

W(C) =
K

∑
k=1

∑
i: C(i)=k

∑
i
′: C(i

′)=k

∥xi − xi′∥21

2
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K-means Clustering
This is equivalent to minimizing

with:

 is the average of predictor  over the observations assigned to
cluster ,

 is the number of observations assigned to cluster 

W(C) =
K

∑
k=1

Nk ∑
i: C(i)=k

∥xi − x̄k∥21

2

x̄k = (x̄k1, … , x̄kp)
x̄kj j

k

Nk k
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K-means Clustering

Minimize the total distance given by each observation to the mean
(centroid) of the cluster to which the observation is assigned.

W(C) =
K

∑
k=1

Nk ∑
i: C(i)=k

∥xi − x̄k∥21

2
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K-means Clustering
An iterative algorithm is used to minimize this criterion

1. Initialize by choosing  observations as centroids 
2. Assign each observation  to the cluster with the nearest centroid, i.e.,

set 
3. Update centroids 
4. Iterate steps 1 and 2 until convergence

K m1, m2, … , mk

i

C(i) = arg min1≤k≤K ∥xi − mk∥2

mk = x̄k
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Here we illustrate the
k-means algorithm
over four iterations on
our example data
with .

K-means Clustering

K = 4
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K-means Clustering
Criterion  is reduced in each iteration so the algorithm is assured
to converge.

Not a convex criterion, the clustering we obtain may not be globally
optimal.

In practice, the algorithm is run with multiple initializations (step 0) and
the best clustering achieved is used.

W(C)
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K-means Clustering
Also, selection of observations as centroids can be improved using the
K-means++ algorithm:

1. Choose an observation as centroid  uniformly at random
2. To choose centroid , compute for each observation  not chosen

as a centroid the distance to the nearest centroid 

3. Set centroid  to an observation randomly chosen with probability 

4. Iterate steps 1 and 2 until  centroids are chosen

m1

mk i

di = min1≤l<k ∥xi − ml∥2

mk

e
d

i

∑
i′ e

d

i′

K
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Choosing the number of clusters
The number of parameters must be determined before running the K-
means algorithm.

There is no clean direct method for choosing the number of clusters to
use in the K-means algorithm (e.g. no cross-validation method)
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Looking at criterion 
 alone is not

sufficient as the
criterion will become
smaller as the value
of  is reduced.

Choosing the number of clusters

W(C)

K
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Choosing the number of clusters
We can use properties of this plot for ad-hoc selection.

Suppose there is a true underlying number  of clusters in the data,

improvement in the  statistic will be fast for values of 

slower for values of .

K∗

WK(C)

K ≤ K∗

K > K∗
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Choosing the number of clusters
Improvement in the  statistic will be fast for values of 

In this case, there will be a cluster which will contain observations
belonging to two of the true underlying clusters, and therefore will have
poor within cluster similarity.

As  is increased, observations may then be separated into separate
clusters, providing a sharp improvement in the  statistic.

WK(C) K ≤ K∗

K

WK(C)
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Choosing the number of clusters
Improvement in the  statistic will be slower for values of 

In this case, observations belonging to a single true cluster are split into
multiple cluster, all with generally high within-cluster similarity,

Splitting these clusters further will not improve the  statistic very
sharply.

WK(C)

K > K∗

WK(C)
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The curve will
therefore have an
inflection point
around .

Choosing the number of clusters

K
∗
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Choosing the number of clusters
The gap statistic is used to identify the inflection point in the curve.

It compares the behavior of the  statistic based on the data with
the behavior of the  statistic for data generated uniformly at
random over the range of the data.

Chooses the  that maximizes the gap between these two 
curves.

WK(C)

WK(C)

K WK(C)
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For this dataset, the
gap statistic suggests
there is no clear
cluster structure and
therefore  is
the best choice.

A choice of  is
also appropriate.

Choosing the number of clusters

K = 1

K = 4
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Summary
Clustering methods are intuitive methods useful to understand structure
within unlabeled observations.

K-means is a frequently used, easy to implement and interpret algorithm
for clustering.
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