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Inference

One way to think about how we use probability in data analysis
(statistical and machine learning) is like this:
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Inference

Law of Large Numbers (LLN): parameter p will be close to p on

average,
Central Limit Theorem (CLT): how confident are we that we found p.
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Inference

Law of Large Numbers (LLN): parameter p will be close to p on

average,
Central Limit Theorem (CLT): how confident are we that we found p.

Confidence Interval:

p(1-p)
Jn

Since p ~ N (p, ) let's find an interval [p_, p_ |, with:

e p atits center,
e contains 95% of the probability specified by the CLT.
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Inference

How do we calculate this interval?

p(1-p)

n

p _ will be the value where N (p, ) is such that

P(Y <p_)=.05/2.
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Inference

How do we calculate this interval?

p_ will be the value where N (p, p%_p) ) is such that
PlY <p_ )=.05/2.
In R, we calculate with gnorm:
. . v/p(1-p)
= qnorm(.05/2, p,
p_ = qnorm(.05/2,p 7 )
VP (1 —p)

= p + qnorm(.05/2, 0,
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Inference
The upper value of the interval is computed with probability 1 — (.05/2),

By the symmetry of the normal distribution is

VP(1 - p)

p. =p + —qnorm(.05/2, 0,
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Inference

Let's see how these intervals look for our twitter bot example:

sample_size phat se lower upper
10 0.700 0.145 0.416 0.984

100 0.690 0.046 0.599 0.781

500 0.702 0.020 0.662 0.742

1000 0.694 0.015 0.665 0.723

10000 0.698 0.005 0.689 0.707

For n = 500, our estimate of p is ¢.660.70.74. 6/38



Hypothesis testing

Suppose that before | sampled tweets | thought (hypothesized) that
more than 50% of tweets are bot-generated.
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Hypothesis testing

Suppose that before | sampled tweets | thought (hypothesized) that
more than 50% of tweets are bot-generated.

Hypothesis Testing A very popular way of using data to suggest this
hypothesis is true:

By using inference to reject the hypothesis that it is not true.
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Hypothesis testing
null hypothesis: 50% or less of tweets are bot-generated

alternative hypothesis (the one we cared about): more than 50% of
tweets are bot-generated
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Hypothesis testing
null hypothesis: 50% or less of tweets are bot-generated

alternative hypothesis (the one we cared about): more than 50% of
tweets are bot-generated

You will see this written In statistics textbooks as:

Hy:p<.b (null)
Hi:p>.5 (alternative)
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Hypothesis testing
Given sample of n tweets, estimate p as we did before.
If p (sample mean from our sample of tweets) is too far from p = .5:

then we reject the null hypothesis: the estimate we derived from the data
we have is not statistically consistent with the null hypothesis.
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Hypothesis testing

How do we say our estimate p is too far? Use the probability model
given by the CLT.

If P(Y > p) > .95 under the null model (of p = .5), we say it is too far
and we reject.

—3 5%

Sy — ™. . '
X ) X , 2% foo close gt ched'
2% N hle, re U-an‘ﬁ
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Hypothesis testing
This 95% threshold is conservative, but somewhat arbitrary.
So we use one more metric, P(|Y'| > p) (the infamous p-value) to say:

We could reject the null hypothesis for all thresholds greater than this p-
value.
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Hypothesis testing

Let's see how testing would look like for our tweet example

sample_size phat se lower upper p_value

10 0.700 0.145 0.416
100 0.690 0.046 0.599
500 0.702 0.020 0.662

1000 0.694 0.015 0.665
10000 0.698 0.005 0.689

0.984
0.781
0.742
0.723
0.707

0.084
0.000
0.000
0.000
0.000
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Hypothesis testing
The t-test

These results hold for n sufficiently large that the normal distribution in

the CLT provides a good approximation of the distribution of estimates p.

In cases where n is smaller, the t-distribution, as opposed to the normal
distribution, provides a better approximation of the distribution of
estimates p.

As n grows, the t-distribution approaches a normal distribution which is
why analysts use the t-test regularly.
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Hypothesis testing

A/B Testing

A classic experimental design where hypothesis testing is commonly

used in A/B testing.

o0
'/

Welcome to our website

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna
aligua. Ut enirm ad minim veniam, guis nostred exercitation
ullamco laboris nisl ut aliguip ex ea commodo consegquat.

Learn more

Welcome to our website

Lanem ipswm dolor sit amet, consectetur adipiscing elit, sed
do elusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nastrud exencitation
ullamico laboris nisi ut aliquip ex ea commoda consequat.

_#Lﬂnnm_
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Hypothesis testing

Here we have two estimates p 4, and p g, the proportion of clicks for
design A and B respectively.

The null hypothesis we would test is that there is no difference in
proportions between the two designs.

Mathematically, we would like to know "What is the probability that we
observe a difference in proportions this large under the null hypothesis".

We will work this out as a homework exercise (HW4).
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Summary

Inference: estimate parameter from data based on assumed probability
model

(e.g, matching expectation; we'll see later another method called
maximum likelihood).
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Summary

Inference: estimate parameter from data based on assumed probability
model

(e.g, matching expectation; we'll see later another method called
maximum likelihood).

For averages the LLN and CLT tells us how to compute probabilities from
a single parameter estimate derived from one dataset of samples.

With these probabilities we can construct confidence intervals for our
estimate.
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Summary

Testing: Use probability under null hypothesis to see how statistically
consistency of estimates obtained from data,

Reject the null hypothesis if estimates are not statistically consistent
enough

(again using probability from CLT when dealing with averages).
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Probability Distributions

Check lecture notes for further discussion of the probability distributions
we saw in this discussion.

18/ 38



Joint and conditional probability

Suppose that for each tweet | sample | can also say if it has a /ot of
retweets or not.

| have another binary random variable Y € {0,1} where Y =1
Indicates the sampled tweet has a lot of retweets.
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Joint and conditional probability

We could illustrate the population of "all" tweets as

No (0)
_____________ q=m——-———
|
X |
bot-generated? I
|
|
Yes (1) !
|
|
|
|
|

Yes (1) No (0)

Y
lots of retweets?
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Joint and conditional probability

We can talk of the joint probability mass function of X and Y":
p( X =zY =y),

where random variables X and Y can take values from domains Dx
and Dy respectively.

Here we have the same conditions as we had for univariate distributions:

1. p(X =z,Y = y) > 0 for all combination of values = and y, and
2. Y yepnm, X =2, Y =y) =1
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Joint and conditional probability
We can also talk about conditional probability:.

the probability of a tweet being bot-generated or not,
conditioned on whether it has lots of retweets or not:;

p(X =z|Y =y)

which also needs to satisfy the properties of a probability distribution.

22 [ 38



Joint and conditional probability

So to make sure

Y p(X=aly —y) =1

r€Dx
we define

p(X =x,Y = y)
p(Y =y)

marginalization: follows from the properties of joint probability
distribution: > , . p(X ==z,Y =y) =p(Y =y).

p(X =z|]Y =y) =
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Joint and conditional probability
Conditional probability lets us talk about independence:

If the probabilty of a tweet being bot-generated does not depend on a
tweet having lots of retweets

e, p(X =z) =p(X =z|Y = y) forall y,

then we say X is independent of Y .
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Joint and conditional probability

No (0)

A
|
|

X |
bot-generated? I
|

|

|

|

|

|

|

|

|

Yes (1)

Yes (1 ) No (0)

Y
lots of retweets?

Is X independent of Y ? What would the diagram look like if X was
independent of Y'?
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Joint and conditional probability

For independent random variables, the joint probability has an easy form

p(X=2Y =y) =p(X =2z)p(Y =y

Generalizes to more than two independent random variables.
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Bayes' Rule

An extremely useful and important rule of probability follows from our
definitions of conditional and joint probability above.

Bayes' rule is pervasive in Statistics, Machine Learning and Artificial
Intelligence.

It is a very powerful tool to talk about uncertainty, beliefs, evidence, and
many other technical and philosophical matters. It is however, of extreme
simplicity.
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Bayes' Rule

Bayes' Rule states that

p(Y =y X =z)p(X = z)
p(Y =y)

which follow directly from our definitions above.

p(X =zlY =y) =
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Bayes' Rule

One very common usage of Bayes' Rule is that it let's us define one
conditional probability distribution based on another probability

distribution.

For example, it may be hard to reason about p(X = z|Y = y) in our
tweet example.
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Bayes' Rule

One very common usage of Bayes' Rule is that it let's us define one
conditional probability distribution based on another probability
distribution.

For example, it may be hard to reason about p(X = z|Y = y) in our
tweet example.

If you know a tweet has a lot retweets (Y = 1), what can you say about
the probability that it is bot-generated, i.e., p(X = 1|Y = 1)?

Maybe not much, tweets have lots of retweets for many reasons.
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Bayes' Rule

However, it may be easier to reason about the reverse: if | tell you a
tweet is bot-generated (X = 1), what can you say about the probability
that it has a lot of retweets, i.e.,, p(Y = 1| X = 1)?

That may be easier to reason about, at least bot-generated tweets are
designed to get lots of retweets.

At minimum, it's easier to estimate because we can get a training set of
bot-generated tweets and estimate this conditional probability.
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Bayes' Rule

Bayes' Rule tells us how to get the hard to reason about (or estimate)
conditional probability p(X = z|Y = y)

In terms of the conditional probability that is easier to reason about (or
estimate) p(Y = y| X = z).

This is the basis of the Naive Bayes prediction method, which we'll revisit
briefly later on.
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Conditional expectation

With conditional probabilty we can start talking about conditional
expectation, which generalizes the concept of expectation we saw
before.

The conditional expected value (conditional mean) of X given Y = yis

EX|Y =y = Y ap(X =z|Y =y)

xEDx

Conditional Expectation, which follows from conditional probability, will
serve as the basis for our Machine Learning method studies in the next
few lectures!
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Maximum likelihood

We saw before how we estimated a parameter from matching
expectation from a probability model with what we observed in data.

The most popular method of estimation (Maximum Likelihood
Estimation) uses a similar idea.
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Maximum likelihood

Given data 1, 2, ..., £, and an assumed model of their distribution,
e.g.,

« X; ~ Bernoulli(p) for all ¢,
e they are iid,

Let's find the value of parameter p that maximizes the likelihood (or
probability) of the data we observe under this assumed probability
model.

We call the resulting estimate the maximum likelihood estimate (MLE).
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Maximum likelihood
Here are some fun exercises to try:

1) Given a sample x1 with X7 ~ N(u, 1), show that the maximum
likelihood estimate of u, it = 1.
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Maximum likelihood

Here are some fun exercises to try:

1) Given a sample x1 with X7 ~ N(u, 1), show that the maximum
likelihood estimate of u, it = 1.

It is most often convinient to minimize negative log-likelihood instead of
maximizing likelihood. So in this case:

—Z(p) = —logp(X1 = z1)
1
= log /27 + E(xl — )’
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Maximum likelihood
To minimize
1
—Z(p) = log 2 + (21 — p)°

Ilgnore terms that are independent of 1, and concentrate only on
minimizing the last term.

Now, this term is always positive, so the smallest value it can have is 0.
So, we minimize it by setting [t = x7.
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Maximum likelihood

2) Given a sample x1, x2, ..., x, of n iid random variables with
X; ~ N(u,1) for all ¢,

Show that the maximum likelihood estimate of u, 1 = x the sample

mean!
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Maximum likelihood

Here we would follow a similar approach, write out the negative log
likelihood as a function f(u; x;) of u that depends on data x;. Two
useful properties here are:

1.

p(Xl = $17X2 — L2y ... 7Xn — inn) :p(Xl p— gjl)p(X2 — 332) « o

2. iog Hz flpszi) = Zz log f(u; xi)

Then find a value of p that minimizes this function. Hint: we saw this
when we showed that the sample mean is the minimizer of total squared
distance in our exploratory analysis unit!
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