
A/B Testing

CMSC320

In this exercise you will experiment with the application of statistical inference in A/B testing. You are a
Data Scientist at jsFrameworksRUs and you are tasked with conducting an experiment to measure the
effect of a webpage redesign on click rate for a link of interest. You decide to use hypothesis testing to
analyze the data you gather from the experiment.

Part 1: Compare to known click rate (pA = 0.5)

In the first case, you assume the click rate for the original version of the page (version A) is pA = .5. The
experiment you carry out is pretty simple: show the webpage to n = 50 subjects and record whether they
click on the link of interest or not. You will use this experiment to estimate your parameter of interest: pB ,
the click rate for the new page design (version B).

When you carry out your experiment, you record that s = 30 subjects clicked on the link of interest.

Based on our discussion in class, you treat this as n = 50 draws from a Bernoulli(.5) random variable, and
use the sample mean x = 1

n

∑n
i=1 xi =

30
50 = 0.6 as your estimate p̂B .

You remember that the hypothesis testing framework is setup in a way where you use your experiment
to reject the hypothesis that the new design does not increase click rate. Therefore, you want to test the
(null) hypothesis pB ≤ pA = 0.5 and reject it if P (X > p̂B) ≤ α under this hypothesis. Remember, α is the
rejection level, and we will use α = 0.05 here.

To compute P (X > p̂B) under the null hypothesis you will use the normal approximation given by the
Central Limit Theorem (CLT).

(a) Derive expressions for EX and var[X] under the null hypothesis in terms of pA. You will need to use
the properties of expectations and variances described below. Here, I give you the derivation for E[X],
you need to do the same for var[X].

E[X] = E

[
1

n

n∑
i=1

Xi

]
(1)

=
1

n

n∑
i=1

E[Xi] (2)

=
1

n
(npA) (3)

= pA (4)

(b) Based on your derivation, compute values for E[X] and var[X] based on pA = 0.5 and n = 50. Use R
or python to do this.

(c) Using the result above, you can now use the CLT by approximating the distribution of X as

N(E[X],
√
var(X)). Based on this approximation, compute P (X > p̂B). Use the R function pnorm, or

norm.cdf in scipy.stats to compute this.
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(d) Should you reject the null hypothesis pB ≤ pA? Why?

(e) What if you had observed the same p̂B = 0.6 but with n = 100 samples. Should you reject the null
hypothesis in this case? Why?

(f) What is the smallest value p̂B you would reject the null hypothesis with n = 100. Use the qnorm
function in R or norm.ppf in scipy.stats for this. Denote this smallest value as qB .

(g) Based on (f), the smallest detectable improvement for pA = 0.5 with n = 100 is then qB − pA. What is
the smallest detectable improvement in your experiment (that is, with n = 50)?

Part 2: Compare to known click rate (pA = 0.75)

In this second case, you also assume the click rate for the original version is known, but is pA = 0.75. The
data recorded for the experiment is the same. You showed the new design to n = 50 subjects and recorded
that s = 30 clicked on the link of interest.

You want to test the hypothesis pB ≤ 0.75 and reject it if P (X > p̂B) < 0.05 under this hypothesis. Note the
probability in this case is different since pA = 0.75.

(a) What are the values of E[X] and var(X) under the null hypothesis in this case.

(b) Based on the CLT approximation, compute P (X > p̂B) under the null hypothesis.

(c) Should you reject the null hypothesis pB ≤ 0.75? Why?

(d) What if you had observed the same p̂B = 0.6 but with n = 100 samples. Should you reject the null
hypothesis in this case? Why?

(e) What is the smallest value p̂B you should reject the null hypothesis with n = 100. Denote this smallest
value as qB .

(f ) Based on (e), the smallest detectable improvement for pA = 0.75 with n = 100 is then qB − pA. What
is the smallest detectable improvement in your experiment (n = 50)?

Part 3

Consider your answers for parts (1g) and (2f). Is the smallest detectable improvement in Question (1g)
larger or smaller than in Question (2f)? Explain why this makes sense mathematically.

Part 4: Comparing to estimated click rate pA.

In this more realistic case you estimate click rates for both page designs in your experiment. The experiment
you carry out is as follows: when a customer visits the site, they are randomly (and independently from
other customers) shown design A or B, and you record if they click on the link of interest or not. You did
this for n = 100 customers and recorded the following data:

design number shown number clicked

A nA = 55 sA = 35
B nB = 45 sB = 35

The null hypothesis we want to test in this case is that pB − pA ≤ 0. That is, that the new design does not
improve the click rate. How can we use what we know about the CLT in this case?

What we will do is treat estimates using sample means p̂A = XA and p̂B = XB as random variables and
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define a new random variable Y = XB −XA corresponding to the difference in click rates pB − pA. With
that, we derive E[Y ] and var(Y ) under the null hypothesis that pB − pA = 0.

(a) Derive expressions for E[Y ] and var(Y ) under the null hypothesis in terms of pA = pB = p. You
will need to use the properties of expectations and variances described below. Here, I give you the
derivation for E[Y ], you need to do the same for var(Y ).

E[Y ] = E
[
XB −XA

]
(5)

= E[XB ]− E[XA] (6)

= pB − pA (7)

= 0 (8)

(b) It looks like we will need an estimate of pA = pB = p for our CLT approximation. Luckily, under
the null hypothesis all n = 100 observations from this experiment can be treated as independent
identically distributed (iid) draws from a Bernoulli(p) distribution. Based on this observation, what
would be your estimate of pA = pB = p?

(c) Now that you have an estimate of p, compute a value for var(Y ).

(d) What is your estimate ŷ of pB − pA based on the data your recorded for this experiment?

Now, we can reject the null hypothesis of no improvement if p(Y > ŷ) ≤ α under the null hypothesis.

(e) Using the CLT approximation, what is P (Y > ŷ)

(f) Can you reject the null hypothesis of no improvement in this case? Why? Remember, we are using
α = 0.05.

Bonus: Smallest detectable improvement for estimated click rates

We could compute smallest detectable improvements in parts 1 and 2 above because we assumed pA was
known. For part 4, we don’t know pA and instead estimate it, so we cannot compute a smallest detectable
improvement before the experiment is run because we don’t know pB = pA = p. We can however, compute
what the smallest detectable difference would be for different values of p.

(a) Make a line plot, with p in the x-axis and the smallest detectable difference as a function of p in the
y-axis. You should assume nA = 55 and nB = 45 as above.

Expectation and variance properties

Properties of expectation

(i) E[aX] = aE[X] for constant a and random variable X
(ii) E[X + Y ] = E[X] + E[Y ] for random variables X and Y

Properties of variance

(i) var[aX] = a2var[X] for constant a and random variable X
(ii) var[X + Y ] = var[X] + var[Y ] for independent random variables X and Y
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Submission

Prepare an Rmarkdown file or Jupyter notebook with your derivations and answers, including code you
used to get your answers. Knit to PDF (or save HTML to PDF) and submit to ELMS.
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