
Data Mining: Itemsets

Héctor Corrada Bravo

University of Maryland, College Park, USA

Fannie Mae: 2018­09­03

Data Mining

For today: the analysis of itemsets

Similar itemsets

Frequent itemsets

1 / 54

Collaborative Filtering

Items: customers

Itemsets: customers that bought

a specific book

Similar itemsets: books

purchased by same customers

Similar Itemsets

2 / 54

Similar Documents

Items: words

Itemsets: documents

Similar itemsets: documents

using many of the same words

Similar Itemsets

3 / 54

Similar News Articles

Items: words

Itemsets: news articles

Similar itemsets: news articles

usinbg many of the same words

Similar Itemsets

4 / 54

Online Purchasing

Items: books

Itemsets: orders (sets of books)

Frequent itemsets: sets of books

that are purchased together

frequently

Frequent Itemsets

5 / 54

Similar Itemsets

Describing set similarity (Jaccard Similarity)

Representing documents as sets (Shingling)

Similarity-preserving set summaries (Minhash)

Search for similar itemsets using Locality-Sensitive Hashing (LSH)

6 / 54

The Jaccard Similarity of sets and

 is

Jaccard Similarity

7 / 54

Exercises

Compute the Jaccard bag similarity of each pair of sets: ,

,

Suppose we have a universal set of elements. We chose two

subsets and , each with of the elements. What is the expected

value of the JS of and ?

8 / 54

Documents (Shingles)

Set all words to lowercase, remove all whitespace and punctuation

"Hurricane Irma, they confirmed landfall" ->

"hurricaneirmatheyconfirmedlandfall"

9 / 54

Documents (Shingles)

Set all words to lowercase, remove all whitespace and punctuation

"Hurricane Irma, they confirmed landfall" ->

"hurricaneirmatheyconfirmedlandfall"

For some parameter , represent document as the set of -long

subsequences of document

For k=3

{hur,urr,rri,...,eir,irm,rma,...,fir,irm,rme,...}

10 / 54

Documents (Shingles)

Choosing : choose large enough that probability of any given shingle

appearing in any given document is low. Depends on collection.

Hashing: hash -shingles instead of using them directly in algorithms

that follow

Using words, effective for similarity (more meaning) but sparser, set of

possible shingles is huge

11 / 54

Min-Hash

Clever idea: let's summarize item(sets) (reduce data size!) but make it

easy to find similar item(sets).

12 / 54

Min-Hash

Characteristic Matrix

Element

1 0 0 1

0 0 1 0

0 1 0 1

1 0 1 1

0 0 1 0

13 / 54

Min-Hash

Permute the rows of the characteristic matrix

Min-Hash value of set: first non-zero row in corresponding column

14 / 54

Min-Hash

Permuted characteristic Matrix

Element

0 0 1 0

0 0 1 0

1 0 0 1

1 0 1 1

0 1 0 1

15 / 54

Min-Hash

Permuted characteristic Matrix

Element

0 0 1 0

0 0 1 0

1 0 0 1

1 0 1 1

0 1 0 1

,
16 / 54

Min-Hash

Property:

Pf: on the board

17 / 54

Min-Hash Signatures

Choose permutations of rows, and set as the Min-Hash given by

permutation of set

Represent set by the signature vector of Min-hashes

Collect signature vectors into a signature matrix

18 / 54

Min-Hash Signatures in Practice

Instead of row permutations, use hash functions over row indices

Let be the th hash of th element

Initialize: set for all and

Row :

Compute for all

For each column :

If has a 0 in row , do nothing

If has a 1 in row , then for each :

set to
19 / 54

Exercise

Element

0 1 0 1

0 1 0 0

1 0 0 1

0 0 1 0

0 0 1 1

1 0 0 0

20 / 54

JS and Minhashing

Estimate as the proportion of rows (hashes) of the signature

matrix that are equal for columns and .

21 / 54

Exercise

Prove that if the JS of two sets is 0, then Min-Hash always gives the right

answer.

22 / 54

Locality-Sensitive Hashing

Minhash gives a compressed representation of item(sets) that retains

similarity

23 / 54

Locality-Sensitive Hashing

Minhash gives a compressed representation of item(sets) that retains

similarity

But to find all pairs of similar item(sets) can still take a lot of time

24 / 54

Locality-Sensitive Hashing

Minhash gives a compressed representation of item(sets) that retains

similarity

But to find all pairs of similar item(sets) can still take a lot of time

LSH gives us a way of only comparing likely similar pairs.

Conversely, ignore pairs that are unlikely similar

25 / 54

LSH for Minhash

Divide signature matrix into bands, each with rows

For each column (itemset) and band, hash it's entries according to

some hash function

Use same hash function in each of the bands, but use different hash

arrays

26 / 54

LSH for Minhash

Divide signature matrix into bands, each with rows

For each column (itemset) and band, hash it's entries according to

some hash function

Use same hash function in each of the bands, but use different hash

arrays

Itemsets with similar signatures will hash to the same bucket with some

likelihood (candidate similar pair)

27 / 54

LSH for Minhash

Divide signature matrix into bands, each with rows

For each column (itemset) and band, hash it's entries according to

some hash function

Use same hash function in each of the bands, but use different hash

arrays

Itemsets with similar signatures will hash to the same bucket with some

likelihood (candidate similar pair)

Itemsets without matching signatures will not

28 / 54

Analysis of LSH

Let

Probability signatures agree in all rows of one band:

Probability do not agree in at least one row of a band:

Probability that signatures do not agree in all rows of any of the

bands:

Probability that signatures agree in all the rows of at least one band

(hash to the same bucket at least once): .

29 / 54

Analysis of LSH

30 / 54

Final algorithm for similar document search

Part I: Shingles

Pick a value of , construct -shingles for each document (optionally

hashing -shingles)

Sort documents by document-shingle pairs by shingle

31 / 54

Final algorithm for similar document search

Part II: Minhash

Pick a length for minhash signatures

Compute minhash signatures for all documents

32 / 54

Final algorithm for similar document search

Part III: LSH

Choose threshold for how similar documents have to be to consider

as a similar pair

Choose number of bands and number of rows such that and

threshold is approximately

Construct candidate pairs using LSH

33 / 54

Final algorithm for similar document search

Part IV: Confirm similar pairs

For each candidate pair, confirm that their signatures match in at least

 fraction of rows

Optionally, verify similarity in shingled documents

34 / 54

Frequent Itemsets

Find items that occur frequently together in sets

Examples:

items frequently bought together in the same transaction

words that appear frequently together in the same document

35 / 54

Market-Basket Model

Items: objects we are modeling Baskets: sets of items (transactions)

Frequent itemsets: items that co-occur frequently in baskets

36 / 54

Frequent Itemsets

Support: define the support of an itemset as the number of baskets in

which itemset appears

Frequent itemsets: Itemsets with support at least some support

threshold

37 / 54

Example

(1) {Cat, and, dog, bites}

(2) {Yahoo, news, claims, a, cat, mated, with, a, dog, and, produced,

viable, offspring}

(3) {Cat, killer, likely, is, a, big, dog}

(4) {Professional, free, advice, on, dog, training, puppy, training}

(5) {Cat, and, kitten, training, and, behavior}

(6) {Dog, &, Cat, provides, dog, training, in, Eugene, Oregon}

(7) {"Dog, and, cat", is, a, slang, term, used, by, police, officers, for, a,

male-female, relationship}

(8) {Shop, for, your, show, dog, grooming, and, pet, supplies}

38 / 54

Association Rules

Rules of the form I -> j: if itemset is in basket, then item is likely in

basket as well

rule confidence: ratio of support of to support of .

rule interest: difference between confidence of rule and fraction of

baskets that contain

39 / 54

Association Rules

Note: once we have itemsets, we can get association rules easily

40 / 54

Association Rules

Note: once we have itemsets, we can get association rules easily

Suppose we find all frequent itemsets over some support threshold

Let itemset with items be one of those itemsets, then

1. there are only candidate Association Rules

2. Both and are also frequent itemsets, so we have already

calculated their support

3. We can quickly compute the confidence and interest of each rule

41 / 54

Exercise

Suppose there are 100 items, numbered 1 to 100, and also 100 baskets,

numbered 1 to 100.

Item is in basket iff divides with no remainder

Item 1 is in all baskets, item 2 in the even-numbered baskets

Basket 24 contains items {1,2,3,4,6,8,12,24}

a) If support threshold is 5, which items are frequent? b) Which pairs are

frequent?

42 / 54

Itemset monotonicity

If is a frequent itemset, then every subset of is a frequent itemset

Why?

43 / 54

The A-priori algorithm

Suppose we are given baskets over items

First pass

Count the number of occurrences of each item (array of values)

After ~rst pass

Identify frequent singletons (above support threshold)

44 / 54

The A-priori algorithm

Second pass

Count the number of occurrences of pairs of frequent items

For each basket:

Check which of its items are frequent (first pass)

For each pair of items increase occurrence count

After the second pass

Identify frequent pairs (above support threshold)

45 / 54

The A-priori algorithm

Third pass

Count the number of occurrences of frequent pairs + a frequent item

For each basket:

Check which item pairs and singletons that are frequent (first and

second pass)

For each combination of pair and singleton, increase occurrence

count

After the third pass

Identify frequent triples (above support threshold)
46 / 54

The A-priori algorithm

And so on until no more frequent sets are identified

Notes:

The data structure to store pair counts will be important consideration

The algorithm has a construct-filter structure: at each pass, construct

the set of candidate itemsets, filter to those that are frequent

47 / 54

Exercise

Apply A-priori algorithm to previous exercise

48 / 54

Handling large datasets

For large datasets storing occurrences of candidate frequent pairs is

problematic

PCY algorithm: hash item pairs and keep count in hash bucket

Define candidate frequent pairs as

 and anre frequent items

 hashes to a frequent bucket (with count > threshold)

49 / 54

Handling large datasets

Identify frequent buckets with a bitmap (little memory)

Only count (and verify) candidate pairs as defined above (expected to be

much fewer)

50 / 54

Exercise

Consider baskets over items

Compute support for each item and each pair of items

Using hash function (hash table with 11 buckets), which

pairs hash to the same buckets?

51 / 54

Exercise

Which buckets are frequent?

Which pairs are counted in the second pass of PCY algorithm?

52 / 54

Summary

Itemset analysis: applications to collaborative filtering, recommendation

engines

Finding Similar Itemsets

Jaccard similarity: measure of set similarity based on common items

Minhashing with LSH: effective way of finding similar itemsets with

efficient data structures for large datasets

53 / 54

Summary

Finding Frequent Itemsets

Market-basket data: model of item transactions

Frequent Itemsets: Sets of items appearing frequently in "baskets"

Association Rules:

Pair-counting Bottleneck: frequent itemset mining memory space

taken mostly in keeping counts of pairs of frequent items

Monotonicity of frequent itemsets

A-priori Algorithm

Hashing for large datasets

54 / 54

