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ML Preliminaries

A common situation in data analysis is that one has an outcome vy and
one or more independent covariates or predictors x;,..., x,.

One usually observes these variables for multiple "instances".
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ML Preliminaries

A common situation in data analysis is that one has an outcome vy and
one or more independent covariates or predictors x;,..., x,.

One usually observes these variables for multiple "instances".

(Note) We use upper case to denote a random variable. To denote actual
numbers we use lower case. One way to think about it: v has not
happened yet, and when it does, we see v =.
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ML Preliminaries
One may be interested in various things:

e \What effects do the covariates have on the outcome?
e How well can we describe these effects?
e Can we predict the outcome using the covariates?, etc...
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Motivating Example: Credit Analysis

default student

No
No
No
No
NoO
No

No
Yes
No
No
No

Yes

balance income lask: predict account default

729.5265 44361.625
817.1804 12106.135
1073.5492 31767.139
529.2506 35704.494
785.6559 38463.496
919.5885 7491.559

What is the outcome y?
What are the predictors x,?
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Terminology and notation
We will be mixing the terminology of statistics and computer science.

For example, we will sometimes call v and x the outcome/predictors,
sometimes observed/covariates, and even input/output. We may call
each instance an observation or example.

5/62



Terminology and notation
We will be mixing the terminology of statistics and computer science.

For example, we will sometimes call v and x the outcome/predictors,
sometimes observed/covariates, and even input/output. We may call
each instance an observation or example.

We will denote predictors with x and outcomes with v (quantitative) and ¢
(qualitative). Notice ¢ are not numbers, so we cannot add or multiply
them.
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Terminology and notation

Height and weight are quantitative measurements. These are sometimes
called continuous measurements.
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Terminology and notation

Height and weight are quantitative measurements. These are sometimes
called continuous measurements.

Gender is a qualitative measurement. They are also called categorical or
discrete. This is a particularly simple example because there are only
two values. With two values we sometimes call it binary.
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Terminology and notation

We will use ¢ to denote the set of possible values. For gender it would be

G = {Male, Female}.

A special case of qualitative variables are ordered qualitative where one
can impose an order. With men/women this can't be done, but with, say,

G = {low, medium, high} It can.
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From data to feature vectors

The vast majority of ML algorithms we see In class treat instances as
"feature vectors".

We can represent each instance as a vector in Euclidean space (z;,...,z,,y)
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From data to feature vectors

The vast majority of ML algorithms we see In class treat instances as
"feature vectors".

We can represent each instance as a vector in Euclidean space (z;,...,z,,y)

This means:

e every measurement is represented as a continuous value
e In particular, categorical variables become numeric (e.g., one-hot

encoding)
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From data to feature vectors

Here is the same credit data represented as a matrix of feature vectors

default student balance income

1 748.2362 11613.22
0 1630.4830 54323.42
0 17/51.34/71 38381.59
1 657.5321 19395.74
1 1926.3716 1/012.44
0 1800.6417 48708.96
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Technical notation

e Observed values will be denoted In lower case. So z; means the ith
observation of the random variable x.

e Matrices are represented with bold face upper case. For example x
will represent all observed predictors.

13 /62



Technical notation

e ~ will usually mean the number of observations, or length of v. : will be
used to denote which observation and ; to denote which covariate or
predictor.

e Vectors will not be bold, for example =; may mean all predictors for
subject i, unless it is the vector of a particular predictor x;.

e All vectors are assumed to be column vectors, so the :-th row of x will
be =, i.e., the transpose of ..
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Geometry and Distances

Now that we think of instances as vectors we can do some interesting
operations.

Let's try a first one: define a distance between two instances using
Euclidean distance

p
131 ZL‘Q E iL‘lj CL'QJ
J=1
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K-nearest neighbor classification

Now that we have a distance between instances we can create a
classifier. Suppose we want to predict the class for an instance .

K-nearest neighbors uses the closest points in predictor space predict v.

== Y

mkENk(:L’)

Ni(z) represents the x-nearest points to .. How would you use vy to make a
prediction?
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K-nearest neighbors algorithm

function KNN-CLASSIFY(z, X, y, K)
S+ |] > Compute distance to all points in X
for all:=1,...,N do
S & (d(z,w:),1)
end for
S < sort(S) > Find K nearest points
y <0
for all k=1,..., K do
(d(x,x;)) < Sk

y<—y+yi > Update prediction
end for
return sign(y) > Return +1 if § > 0, —1 otherwise

end function
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K-nearest neighbors algorithm
An important notion in ML and prediction is /inductive bias.

What assumptions we make about our data that allow us to make
predictions.
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K-nearest neighbors algorithm

An important notion in ML and prediction is /inductive bias.

What assumptions we make about our data that allow us to make
predictions.

In KNN, our /nductive bias is that points that are nearby will be of the
same class.
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K-nearest neighbors algorithm

Parameter x Is a hyper-parameter, it's value may affect prediction
accuracy significantly.
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K-nearest neighbors algorithm

Parameter x Is a hyper-parameter, it's value may affect prediction
accuracy significantly.
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K-nearest neighbors algorithm

Feature scaling is an
Important issue in distance-
based methods.

Which of these two features
will affect distance the most?

We will see In later lectures
how to address this.

balance

2000 1

1000 A

0 .
0.000.250.500.751.00
student

factor(default)

o -1
o 1
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Quick vector algebra review

e A (real-valued) vector is just an array of real values, for instance
z = (1,2.5,-6) IS @ three-dimensional vector.

e Vector sums are computed pointwise, and are only defined when
dimensions match, so

(1,2.5,—6) + (2, —2.5,3) = (3,0, —3)
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Quick vector algebra review

In general, if c=a+5then ca=qd+d for all vectors .

Vector addition can be viewed geometrically as taking a vector ., then
tacking on » to the end of it; the new end point is exactly .

a+b
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Quick vector algebra review

Scalar Multiplication: vectors can be scaled by real values;

2(1,2.5,—6) = (2,5, —12)

In general, ar = (azy,axs,. .., axp)
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Quick vector algebra review
The norm of a vector =, written |z is its length.

Unless otherwise specified, this is its Euclidean length, namely:

p

— 2
Izl = 4| >3

=1
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Quick vector algebra review
Quiz

Write Euclidean distance of vectors » and » as a vector norm
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Quick vector algebra review

The dot product, or inner product of two vectors » and » is defined as
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Quick vector algebra review

The dot product, or inner product of two vectors » and » is defined as

A useful geometric interpretation of the inner product v« IS that it gives
the projection of » onto « (when |ju =1).
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Back to KNN classification

The algorithm we saw scans the complete training set x to make a
prediction for observation .

This is not a good idea when the training set is massive.
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Back to KNN classification
Suppose | give you function hash_vector that does the following:

e Generate random unit vector «, |u| =1
e Given vector =, compute q = 2'u
 Round . to the nearest integer
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Back to KNN classification
Suppose | give you function hash_vector that does the following:

e Generate random unit vector «, |u| =1
e Given vector =, compute q = 2'u
 Round . to the nearest integer

Quiz

Sketch a system that uses locality sensitive hashing (LSH) with
hash_vector to find candidate near neighbors of . to avoid computing
distance to all vectors in dataset x.
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The curse of dimensionality

Distance-based methods like KNN can be problematic in high-
dimensional problems
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The curse of dimensionality

Consider the case where we have many covariates. We want to use -
nearest neighbor methods.
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The curse of dimensionality

Consider the case where we have many covariates. We want to use -
nearest neighbor methods.

Basically, we need to define distance and look for small multi-

dimensional "balls" around the target points. With many covariates this
becomes difficult.
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The curse of dimensionality

Imagine we have equally spaced data and that each covariate is in [o,1).
We want to something like kNN with a local focus that uses 10% of the
data in the local fitting.
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The curse of dimensionality

Imagine we have equally spaced data and that each covariate is in [o,1).
We want to something like kNN with a local focus that uses 10% of the
data in the local fitting.

If we have , covariates and we are forming ,-dimensional cubes, then
each side of the cube must have size : determined by ixix .- xi1=r = 10.
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The curse of dimensionality

If the number of covariates is p=10, then := .1 = 5. S0 it really isn't local!

If we reduce the percent of data we consider to 1%, :=o.63. Still not very
local.
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The curse of dimensionality

If the number of covariates is p=10, then := .1 = 5. S0 it really isn't local!
If we reduce the percent of data we consider to 1%, :=o.63. Still not very
local.

If we keep reducing the size of the neighborhoods we will end up with
very small number of data points in each average and thus predictions
with very large variance.
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The curse of dimensionality
This i1s known as the curse of dimensionallity.

Because of this so-called curse, it is not always possible to use KNN. But
other methods, like Decision Trees, thrive on multidimensional data.
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Geometric Representation of Classification
Problems

Recall that our setting is that we observe for subject : predictors

(covariates) =;, and qualitative outcomes (or classes) 4, which can takes
values from a discrete set .
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Geometric Representation of Classification
Problems

Recall that our setting is that we observe for subject : predictors
(covariates) =;, and qualitative outcomes (or classes) 4, which can takes
values from a discrete set .

Since our prediction &) will always take values in the discrete set ¢, we
can always divide the input space into a collection of regions taking the
same predicted values.
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Geometric Representation of Classification

Problems

Boundaries can be smooth or rough
depending on the prediction

function.

KNN (1)
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Geometric Representation of Classification
Problems

For an important class of procedures, these decision boundaries are
linear.

This i1s what we will refer to as linear methods for classification.
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Geometric Representation of Classification
Problems

The perceptron algorithmis away
of finding discriminant functions that
are linear with respect to the -1

covariates x,,..., x,.

5[. 2]
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Geometric Representation of Classification
Problems

In p-dimensional space r’ these are described by vectors «». The decision
boundary is thus

L ={z:w'z =0}
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Geometric Representation of Classification
Problems

Notice that this boundary partitions the input space into two sets on each
side of the line.

If we restrict estimates to those for which
lw|| =1

Then the signed distance of any point = to the decision boundary r IS .
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Geometric Representation of Classification
Problems

With this we can easily describe the two partitions as

LT ={z:w'z > 0},

L™ ={z:v'z <0}
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Geometric Representation of Classification
Problems

Intuitively, the » we want as an estimate Is one that separates the training
data as perfectly as possible.

If we code our classes as y—-11fg=1and y= +1 If g=2, we can describe our
Intuitive requirement for estimate » as:

yi(w'z)) >0,i=1,..., N
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Perceptron Algorithm

The Perceptron algorithm is one way of finding a vector » that satisfies
the separation requirement as much as possible.

50/ 62



Perceptron Algorithm

Penalize » by how far into the wrong side misclassified points are:

D(w) = — Z i (w'z;)
ieEM

Mm: set of points misclassified by » (on the wrong side of the hyper-plane).
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Perceptron Algorithm

The perceptron algorithm estimates » by minimizing b.
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Perceptron Algorithm

The perceptron algorithm estimates » by minimizing 0. We'll see detalls
how next class, but this introduces an important point:

We will write down learning algorithms as optimization problems where
we minimize some cost function determined by prediction error.
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Perceptron Algorithm

function PERCEPTRON(X,y,MaxIter)
w + (0,...,0)
for all iter =1,..., MaxIter do
foralli=1,...,N do
if y;(w'z;) <0 then
W W+ Y; X;
end if
end for
end for
return w
end function

> For every observation
> Check if x; is incorrectly classified
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Perceptron Algorithm

Why does this work?
Quiz

Show that if 4 w'z;) < 0 then after updating », vz IS changed in the proper
direction. That is, it is made larger if 4, = +1 and made smaller if 4, = 1.
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Perceptron Algorithm

Some Notes

e MaxIter is a hyper-parameter.
e You can interpret the size of v, as the importance of feature ; for
classification
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Perceptron Algorithm
There are a few problems with this algorithm:

If there exists » that separates the training points perfectly,
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Perceptron Algorithm
There are a few problems with this algorithm:
If there exists » that separates the training points perfectly,

then there are an infinite number of +s that also separate the data
perfectly
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Perceptron Algorithm

Algorithm will converge in a finite number of steps if the training data is
separable
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Perceptron Algorithm

Algorithm will converge in a finite number of steps if the training data is
separable

However, the number of finite steps can be very large (see CIML for a
bound on the number of steps)

60 / 62



Perceptron Algorithm

When the training data is not separable, the algorithm will not converge.
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Perceptron Algorithm

Summary
o We will represent many ML algorithms geometrically as vectors
e Vector math review

o K-nearest neighbors and perceptron algorithms
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