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Neural	networks	are	a	decades	old
area	of	study.

Initially,	these	computational	models
were	created	with	the	goal	of
mimicking	the	processing	of
neuronal	networks.

Historical	Overview



Inspiration:	model	neuron	as
processing	unit.

Some	of	the	mathematical	functions
historically	used	in	neural	network
models	arise	from	biologically
plausible	activation	functions.

Historical	Overview



Somewhat	limited	success	in
modeling	neuronal	processing

Neural	network	models	gained
traction	as	general	Machine
Learning	models.

Historical	Overview



Historical	Overview
Strong	results	about	the	ability	of	these	models	to	approximate	arbitrary
functions

Became	the	subject	of	intense	study	in	ML.

In	practice,	effective	training	of	these	models	was	both	technically	and
computationally	difficult.



Starting	from	2005,	technical
advances	have	led	to	a	resurgence
of	interest	in	neural	networks,
specifically	in	Deep	Neural
Networks.

Historical	Overview
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powerful	parallel	processing	given	by	Graphical	Processing	Units
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Deep	Learning
Advances	in	computational	processing:

powerful	parallel	processing	given	by	Graphical	Processing	Units

Advances	in	neural	network	architecture	design	and	network	optimization

Researchers	apply	Deep	Neural	Networks	successfully	in	a	number	of
applications.



Self	driving	cars	make	use	of	Deep
Learning	models	for	sensor
processing.

Deep	Learning



Image	recognition	software	uses
Deep	Learning	to	identify	individuals
within	photos.

Deep	Learning



Deep	Learning	models	have	been
applied	to	medical	imaging	to	yield
expert-level	prognosis.

Deep	Learning



An	automated	Go	player,	making
heavy	use	of	Deep	Learning,	is
capable	of	beating	the	best	human
Go	players	in	the	world.

Deep	Learning



Neural	Networks	and	Deep	Learning
In	this	unit	we	study	neural	networks	and	recent	advances	in	Deep
Learning.



Projection-Pursuit	Regression
To	motivate	our	discussion	of	Deep	Neural	Networks,	let's	turn	to	simple
but	very	powerful	class	of	models.

As	per	the	usual	regression	setting,	suppose

given	predictors	(attributes)	 	for	an	observation

we	want	to	predict	a	continuous	outcome	 .

{X1, … , Xp}

Y



Projection-Pursuit	Regression
The	Projection-Pursuit	Regression	(PPR)	model	predicts	outcome	
using	function	 	as

where:

	is	a	p-dimensional	weight	vector
so,	 	is	a	linear	combination	of	predictors	
and	 ,	 	are	univariate	non-linear	functions	(a	smoothing
spline	for	example)

Y

f(X)

f(X) =
M

∑
i=1

gm(w′
mX)

wm

w′X = ∑p
j=1 wmjxj xj

gm m = 1, … , M



Projection-Pursuit	Regression
Our	prediction	function	is	a	linear	function	(with	 	terms).

Each	term	 	is	the	result	of	applying	a	non-linear	function	to,	what
we	can	think	of	as,	a	derived	feature	(or	derived	predictor)	 .

M

gm(w′
mX)

Vm = w′
mX



Projection-Pursuit	Regression

In	PPR	we	are	reducing	the	dimensionality	of	 	from	 	to	 	using	linear
projections,

And	building	a	regression	function	over	the	representation	with	reduced
dimension.

f(X) =
M

∑
i=1

gm(w′
mX)

X p M



Projection-Pursuit	Regression
Let's	revist	the	data	from	our	previous	unit	and	see	how	the	PPR	model
performs.

This	is	a	time	series	dataset	of	mortgage	affordability	as	calculated	and
distributed	by	Zillow:	https://www.zillow.com/research/data/.

The	dataset	contains	affordability	measurements	for	76	counties	with
data	from	1979	to	2017.	Here	we	plot	the	time	series	of	affordability	for
all	counties.

https://www.zillow.com/research/data/


We	will	try	to	predict
affordability	at	the
last	time-point	given
in	the	dataset	based
on	the	time	series	up
to	one	year	previous
to	the	last	time	point.

Projection-Pursuit	Regression



Projection-Pursuit	Regression



Projection-Pursuit	Regression
So,	how	can	we	fit	the	PPR	model?

As	we	have	done	previously	in	other	regression	settings,	we	start	with	a
loss	function	to	minimize

Use	an	optimization	method	to	minimize	the	error	of	the	model.

For	simplicity	let's	consider	a	model	with	 	and	drop	the	subscript	 .

L(g, W ) =
N

∑
i=1

[yi −
M

∑
m=1

gm(w′
mxi)]

2

M = 1 m



Projection-Pursuit	Regression
Consider	the	following	procedure

Initialize	weight	vector	 	to	some	value	

Construct	derived	variable	

Use	a	non-linear	regression	method	to	fit	function	 	based	on	model	
.	You	can	use	additive	splines	or	loess

w wold

v = wold

g

E[Y |V ] = g(v)



Projection-Pursuit	Regression
Given	function	 	now	update	weight	vector	 	using	a	gradient
descent	method

where	 	is	a	learning	rate.

g wold

w = wold + 2γ
N

∑
i=1

(yi − g(vi))g′(vi)xi

= wold + 2γ
N

∑
i=1

rixi

γ



Projection-Pursuit	Regression

In	the	second	line	we	rewrite	the	gradient	in	terms	of	the	residual	 	of	the
current	model	 	(using	the	derived	feature	 )	weighted	by,	what	we
could	think	of,	as	the	sensitivity	of	the	model	to	changes	in	derived
feature	 .

w = wold + 2γ
N

∑
i=1

(yi − g(vi))g′(vi)xi

= wold + 2γ
N

∑
i=1

rixi

ri

g(vi) v

vi



Projection-Pursuit	Regression
Given	an	updated	weight	vector	 	we	can	then	fit	 	again	and	continue
iterating	until	a	stop	condition	is	reached.

w g



Projection-Pursuit	Regression
Let's	consider	the	PPR	and	this	fitting	technique	a	bit	more	in	detail	with
a	few	observations

We	can	think	of	the	PPR	model	as	composing	three	functions:

the	linear	projection	 ,
the	result	of	non-linear	function	 	and,	in	the	case	when	 ,
the	linear	combination	of	the	 	functions.

w′x

g M > 1

gm



Projection-Pursuit	Regression
To	tie	this	to	the	formulation	usually	described	in	the	neural	network
literature	we	make	one	slight	change	to	our	understanding	of	derived
feature.

Consider	the	case	 ,	the	final	predictor	is	a	linear	combination	
.

We	could	also	think	of	each	term	 	as	providing	a	non-linear
dimensionality	reduction	to	a	single	derived	feature.

M > 1

∑M
i=1 gm(vm)

gm(vm)



Projection-Pursuit	Regression
This	interpretation	is	closer	to	that	used	in	the	neural	network	literature,
at	each	stage	of	the	composition	we	apply	a	non-linear	transform	to	the
data	of	the	type	 .g(w′x)



Projection-Pursuit	Regression
The	fitting	procedure	propagates	errors	(residuals)	down	this	function
composition	in	a	stage-wise	manner.



Feed-forward	Neural	Networks
We	can	now	write	the	general	formulation	for	a	feed-forward	neural
network.

We	will	present	the	formulation	for	a	general	case	where	we	are
modeling	 	outcomes	 	as	 .K Y1, … , Yk f1(X), … , fK(X)



Feed-forward	Neural	Networks
In	multi-class	classification,	categorical	outcome	may	take	multiple
values

We	consider	 	as	a	discriminant	function	for	class	 ,

Final	classification	is	made	using	 .	For	regression,	we	can	take	
.

Yk k

arg maxk Yk

K = 1



Feed-forward	Neural	Networks
A	single	layer	feed-forward	neural	network	is	defined	as

hm = gh(w′
1mX), m = 1, … , M

	fk = gfk(w′
2k

h), k = 1, … , K



The	network	is	organized	into	input,
hidden	and	output	layers.

Feed-forward	Neural	Networks



Feed-forward	Neural	Networks
Units	 	represent	a	hidden	layer,
which	we	can	interpret	as	a	derived
non-linear	representation	of	the
input	data	as	we	saw	before.

hm



Feed-forward	Neural	Networks
Function	 	is	an	activation	function
used	to	introduce	non-linearity	to	the
representation.

gh



Historically,	the
sigmoid	activation
function	was
commonly	used	

	or	the
hyperbolic	tangent.

Feed-forward	Neural	Networks

gh(v) = 1
1+e−v



Nowadays,	a	rectified
linear	unit	(ReLU)	

	is	used
more	frequently	in
practice.	(there	are
many	extensions)

Feed-forward	Neural	Networks

gh(v) = max{0, v}



Feed-forward	Neural	Networks
Function	 	used	in	the	output	layer
depends	on	the	outcome	modeled.

For	classification	a	soft-max	function
can	be	used	 	where	

.

For	regression,	we	may	take	 	to
be	the	identify	function.

gf

gfk(tk) = etk

∑K
l=1 etk

tk = w′
2k

h

gfk



Feed-forward	Neural	Networks
The	single-layer	feed-forward	neural	network	has	the	same
parameterization	as	the	PPR	model,

Activation	functions	 	are	much	simpler,	as	opposed	to,	e.g.,	smoothing
splines	as	used	in	PPR.

gh



Feed-forward	Neural	Networks
A	classic	result	of	the	Neural	Network	literature	is	the	universal	function
representational	ability	of	the	single-layer	feed-forward	neural	network
with	ReLU	activation	functions	(Leshno	et	al.	1993).



Feed-forward	Neural	Networks
A	classic	result	of	the	Neural	Network	literature	is	the	universal	function
representational	ability	of	the	single-layer	feed-forward	neural	network
with	ReLU	activation	functions	(Leshno	et	al.	1993).

However,	the	number	of	units	in	the	hidden	layer	may	be	exponentially
large	to	approximate	arbitrary	functions.



Feed-forward	Neural	Networks
Empirically,	a	single-layer	feed-forward	neural	network	has	similar
performance	to	kernel-based	methods	like	SVMs.

This	is	not	usually	the	case	once	more	than	a	single-layer	is	used	in	a
neural	network.
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In	modern	neural	network	literature,	the	graphical	representation	of
neural	nets	we	saw	above	has	been	extended	to	computational	graphs.



Fitting	with	back	propagation
In	modern	neural	network	literature,	the	graphical	representation	of
neural	nets	we	saw	above	has	been	extended	to	computational	graphs.

Especially	useful	to	guide	the	design	of	general-use	programming
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Fitting	with	back	propagation
In	modern	neural	network	literature,	the	graphical	representation	of
neural	nets	we	saw	above	has	been	extended	to	computational	graphs.

Especially	useful	to	guide	the	design	of	general-use	programming
libraries	for	the	specification	of	neural	nets.

They	have	the	advantage	of	explicitly	representing	all	operations	used	in
a	neural	network	which	then	permits	easier	specification	of	gradient-
based	algorithms.
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Fitting	with	back	propagation
Gradient-based	methods	based	on	stochastic	gradient	descent	are	most
frequently	used	to	fit	the	parameters	of	neural	networks.

These	methods	require	that	gradients	are	computed	based	on	model
error.

The	layer-wise	propagation	of	error	is	at	the	core	of	these	gradient
computations.

This	is	called	back-propagation.



Fitting	with	back	propagation
Assume	we	have	a	current	estimate
of	model	parameters,	and	we	are
processing	one	observation	 	(in
practice	a	small	batch	of
observations	is	used).

x



Fitting	with	back	propagation
First,	to	perform	back	propation	we
must	compute	the	error	of	the	model
on	observation	 	given	the	current
set	of	parameters.

To	do	this	we	compute	all	activation
functions	along	the	computation
graph	from	the	bottom	up.

x



Fitting	with	back	propagation
Once	we	have	computed	output	 ,
we	can	compute	error	(or,	generally,
cost)	 .

Once	we	do	this	we	can	walk	back
through	the	computation	graph	to
obtain	gradients	of	cost	 	with
respect	to	any	of	the	model
parameters	applying	the	chain	rule.

ŷ

J(y, ŷ)

J



Fitting	with	back	propagation
We	will	continously	update	a
gradient	vector	 .

First,	we	set	

∇

∇ ← ∇ŷ J



Fitting	with	back	propagation
Next,	we	need	the	gradient	

We	apply	the	chain	rule	to	obtain	

	is	the	derivative	of	the	softmax
function
	is	element-wise	multiplication.

Set	 .

∇tJ

∇tJ = ∇ ⊙ f ′(t)

f ′

⊙

∇ ← ∇tJ



Fitting	with	back	propagation
Next,	we	want	to	compute	 .

We	can	do	so	using	the	gradient	we
just	computed	 	since	 .

In	this	case,	we	get	 .

∇Wk
J

∇ ∇Wk
J = ∇tJ∇Wk

t

∇Wk
J = ∇h′



Fitting	with	back	propagation
At	this	point	we	have	computed
gradients	for	the	weight	matrix	
from	the	hidden	layer	to	the	output
layer,	which	we	can	use	to	update
those	parameters	as	part	of
stochastic	gradient	descent.

Wk



Fitting	with	back	propagation
Once	we	have	computed	gradients
for	weights	connecting	the	hidden
and	output	layers,	we	can	compute
gradients	for	weights	connecting	the
input	and	hidden	layers.



Fitting	with	back	propagation
We	require	 ,	we	we	can	compute
as	 	since	 	currently	has	value	

.

At	this	point	we	can	set	 .

∇hJ

W ′
k
∇ ∇

∇tJ

∇ ← ∇hJ



Fitting	with	back	propagation
Finally,	we	set	 	where	
	is	the	derivative	of	the	ReLU
activation	function.

This	gives	us	 .

∇ ← ∇zJ = ∇ ⋅ g′(z)

g′

∇Wh
J = ∇x′



Fitting	with	back	propagation
At	this	point	we	have	propagated
the	gradient	of	cost	function	 	to	all
parameters	of	the	model

We	can	thus	update	the	model	for
the	next	step	of	stochastic	gradient
descent.

J



Practical	Issues
Stochastic	gradient	descent	(SGD)	based	on	back-propagation	algorithm
as	shown	above	introduces	some	complications.



Scaling
The	scale	of	inputs	 	effectively	determines	the	scale	of	weight	matrices	

Scale	can	have	a	large	effect	on	how	well	SGD	behaves.

In	practice,	all	inputs	are	usually	standardized	to	have	zero	mean	and
unit	variance	before	application	of	SGD.

x

W



Initialization
With	properly	scaled	inputs,	initialization	of	weights	can	be	done	in	a
somewhat	reasonable	manner

Randomly	choose	initial	weights	in	 .[−.7, .7]



Overfitting
As	with	other	highly-flexible	models	we	have	seen	previously,	feed-
forward	neural	nets	are	prone	to	overfit	data.



Overfitting
As	with	other	highly-flexible	models	we	have	seen	previously,	feed-
forward	neural	nets	are	prone	to	overfit	data.

We	can	incorporate	penalty	terms	to	control	model	complexity	to	some
degree.



Overfitting
The	most	commonly	used	method	for	this	is	to	apply	a	ridge	penalty	term
in	the	cost	function

where	 	is	an	application	appropriate	loss-function.

J(ŷ , y) = L(ŷ , y) + λ∥W∥2

L



Overfitting
The	most	commonly	used	method	for	this	is	to	apply	a	ridge	penalty	term
in	the	cost	function

where	 	is	an	application	appropriate	loss-function.

Our	discussion	of	back-propagation	above	would	incorporate	the
gradient	of	this	penalty	term	as	appropriate.

J(ŷ , y) = L(ŷ , y) + λ∥W∥2

L
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Architecture	Design
A	significant	issue	in	the	application	of	feed-forward	neural	networks	is
that	we	need	to	choose	the	number	of	units	in	the	hidden	layer.

We	saw	above	that	a	wide	enough	hidden	layer	is	capable	of	perfectly
fitting	data.

We	will	also	see	later	that	in	many	cases	making	the	neural	network
deeper	instead	of	wider	performs	better.

In	this	case,	models	may	have	significantly	fewer	parameters,	but	tend	to
be	much	harder	to	fit.



Architecture	Design
Ideal	network	architectures	are	task	dependent

Require	much	experimentation

Judicious	use	of	cross-validation	methods	to	measure	expected
prediction	error	to	guide	architecture	choice.
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Multiple	Minima
As	opposed	to	most	other	learning	methods	we	have	seen	so	far,	the
feed-forward	neural	network	yields	a	non-convex	optimization	problem.

This	will	lead	to	the	problem	of	multiple	local	minima	in	which	methods
like	SGD	can	suffer.

We	will	see	later	in	detail	a	variety	of	approaches	used	to	address	this
problem.

Here,	we	present	a	few	rule	of	thumbs	to	follow.
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Multiple	Minima
The	local	minima	a	method	like	SGD	may	yield	depend	on	the	initial
parameter	values	chosen.

One	idea	is	to	train	multiple	models	using	different	initial	values	and
make	predictions	using	the	model	that	gives	best	expected	prediction
error.

A	related	idea	is	to	average	the	predictions	of	this	multiple	models.

Finally,	we	can	use	bagging	as	described	in	a	previous	session	to	create
an	ensemble	of	neural	networks	to	circumvent	the	local	minima	problem.



Summary
Neural	networks	are	representationally	powerful	prediction	models.

They	can	be	difficult	to	optimize	properly	due	to	the	non-convexity	of
the	resulting	optimization	problem.

Deciding	on	network	architecture	is	a	significant	challenge.	We'll	see
later	that	recent	proposals	use	deep,	but	thinner	networks	effectively.
Even	in	this	case,	choice	of	model	depth	is	difficult.

There	is	tremendous	excitment	over	recent	excellent	performance	of
deep	neural	networks	in	many	applications.


