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Support Vector Machines
State-of-the-art classification and regression method

Flexible and efficient framework to learn classifers.
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Support Vector Machines
State-of-the-art classification and regression method
Flexible and efficient framework to learn classifers.

Build upon linear methods we have discussed previously and have a
nice geometric interpretation of how they are trained (based maximum
margin arguments).
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Support Vector Machines

SVMs follow the "predictor
space partition" framework

Training Set linear svm
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Separating Hyperplanes
Training data: {(xi,), (x2,%), - -, (%n, vn)}
* x IS a vector of , predictor values for ith observation,

e 4 IS the class label (we're going to use +1 and -1)
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Separating Hyperplanes

Training data: {(xi,), (x2,%), - -, (%n, vn)}
* x IS a vector of , predictor values for ith observation,
e 4 IS the class label (we're going to use +1 and -1)

Build a classifier by defining a discriminative function such that

b+ wixr;y1 + woxyp + -+ + WpZip > Olf’yz = +1

and

b+ W11 + waxio + - - - + WpZip < Olf’yz = -1
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Separating Hyperplanes

Points where the discriminative function equals 0 form a hyper-plane
(l.e., aline in 2D)

{z : b+wiz; + -+ wpx, =0}
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Separating Hyperplanes

Hyper-plane partitions the predictor space into two sets on each side of
the line.

Denote w as the vector (wi,w,,...,w,)
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Separating Hyperplanes

Hyper-plane partitions the predictor space into two sets on each side of
the line.

Denote w as the vector (wi,w,,...,w,)

Restrict estimates to those for which ww = |w|? =1
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Separating Hyperplanes

Hyper-plane partitions the predictor space into two sets on each side of
the line.

Denote w as the vector (wi,w,,...,w,)
Restrict estimates to those for which ww = |w|? =1

Then, the signed distance of any point » to the decision boundary r Is

b+wzx.
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Separating Hyperplanes

With this we can easily describe the two partitions as

L"={z:b+wz >0},

L™ ={z:b+waz <0}
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Separating Hyperplanes

The w we want as an estimate is one that separates the training data as
perfectly as possible.
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Separating Hyperplanes

The w we want as an estimate is one that separates the training data as
perfectly as possible.

Describe this requirement as

yi(b+wx) >0,i=1,..., N
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Perceptron Algorithm

Algorithm to find vector w that satisfies the separation requirement as
much as possible.

Penalize w by how far into the wrong side misclassified points are:

D(b,w) = — Z y; (b + w'z;)
eEM

M. set of points misclassified by w (on the wrong side of the hyper-plane).
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Perceptron Algorithm
Estimate w by minimizing b.

How do we do this??
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Tangent: Why do we use means so much in Data
Science?

Suppose | get some dataset for analysis, the first thing | do is to use
Exploratory Data Analysis to get a sense of what this data looks like.

One purpose of EDA is to spot problems in data (as part of data
wrangling) and understand variable properties like:

e central trends

e Spread

o skew

e suggest possible modeling strategies (e.g., probability distributions)
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Tangent: Why do we use means so much in Data

Science?
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This Is a dataset about diamond
characteristics, one of which is a
diamonds depth which we plot the
distribution of here.
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Tangent: Why do we use means so much in Data
Science?

An obvious question to ask is what
IS the central tendency of depth in
this dataset?

Depth Histogram
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Tangent: Why do we use means so much in Data

Science?

y
1000 2000 3000 4000

0

Depth Histogram

The best known statistic for central
tendency is the mean of the data:
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Tangent: Why do we use means so much in Data
Science?

Turns out we can be a bit more formal about why the mean of the data
makes sense as an estimate of central tendency
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Tangent: Why do we use means so much in Data
Science?

Turns out we can be a bit more formal about why the mean of the data
makes sense as an estimate of central tendency

Define cost function rss of some parameter , as
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Tangent: Why do we use means so much
in Data Science?

We can plot RSS for different values
of »

Residual Sum of Squares

RSS
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Tangent: Why do we use means so much
in Data Science?

We should use the . that minimizes
RSS as our estimate of central
tendency. Why?

Residual Sum of Squares

RSS
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Tangent: Why do we use means so much
in Data Science?

Claim Setting .=z minimizes rss(y)

Residual Sum of Squares

over all values of ..

Quiz Prove this claim.

RSS
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Math Review: Gradients
Gradients are a generalization of the derivative for vectors

Their role in optimization is similar to what we saw in the proof to the
previous claim

For example: if we want to find the minimum of a function, find a point
where gradient is O
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Math Review: Gradients

Suppose function f:r* - R

Takes vector z = (z;,2,,...,z,) @S Input

The gradient of 7 is the vector where jth entry is the derivative of s with
respect to ;.

vmf:<ﬁ,...ﬁ>
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Math Review: Gradients

Consider the following function

Fw) = 5 D Nz —

Quiz. Write the gradient v, ¢
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Math Review: Gradients
For now we will use two important properties of the gradient:

e v,.f(z*) =0 IS @ necessary (not sufficient) condition for vector . to be an
optimizer of ¢

e v.f(z*) gives the direction of steepest ascent of function s at point .
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Optimization with gradients

Let's use these properties to concoct an optimization method: gradient
descent
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Optimization with gradients

Let's use these properties to concoct an optimization method: gradient
descent

Given function s to minimize

e Start at some arbitrary vector -

e Repeat until done:
o Find the direction of steepest descent. —v . #(z)
o Update - by moving in that direction
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Optimization with gradients

function GRADIENTDESCENT(f, K, n1,...)
20 « (0,...,0)
for allk=1,..., K do
gtk sz(z(k_l))
2(k)  2(k=1) _ . g(K)
end for
return z(¥)
end function
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Optimization with gradients

Quiz Sketch gradient descent algorithm to minimize function

1 N

fw) =5 > llzi — plf®

i=1
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Optimization with gradients

Consider the linear regression (least squares problem): Given dataset
(@,y),- ..,z y.), WNErE outcomes y; are continuous.

Suppose we want to model outcome v as a linear function of x:

Y=b+wz
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Optimization with gradients

Consider the linear regression (least squares problem): Given dataset
(@,y),- ..,z y.), WNErE outcomes y; are continuous.

Suppose we want to model outcome v as a linear function of x:

Y=b+wz

Quiz Sketch gradient descent algorithm to minimize squared error l0ss

N

L(b, w) = % 3 [y — (b + W)

1=1
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Perceptron Algorithm

Algorithm to find vector w that satisfies the separation requirement as
much as possible.

Penalize w by how far into the wrong side misclassified points are:

D(b,w) = — Z y; (b + w'z;)
eEM

M. set of points misclassified by w (on the wrong side of the hyper-plane).
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Perceptron Algorithm

Assuming m Is fixed, the gradient of o is

VD = — Z YiT;
ieEM

and

VD =—->

1EM
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Perceptron Algorithm
Perceptron algorithm uses stochastic gradient descent.

 Initialize parameters » and w
e Cycle through training points i, if it is misclassified, update parameters
as

W W+ YT

and
b < b+ ny;

e Stop when converged (or get tired of waiting)

This is gradient descent 36 /66



Perceptron Algorithm
There are a few problems with this algorithm:

If there exists » and w that separates the training points perfectly,
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Perceptron Algorithm
There are a few problems with this algorithm:
If there exists » and w that separates the training points perfectly,

then there are an infinite number of » and ws that also separate the data
perfectly
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Perceptron Algorithm

Algorithm will converge in a finite number of steps if the training data is
separable
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Perceptron Algorithm

Algorithm will converge in a finite number of steps if the training data is
separable

However, the number of finite steps can be very large
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Perceptron Algorithm

When the training data is not separable, the algorithm will not converge.
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Support Vector Machines

Support Vector Machines (SVMs) are designed to directly address these
problems.
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Support Vector Machines

A central concept in SVMs that we
did not see In logistic regression is
the margin: the distance between

the separating plane and its nearest
datapoints.
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Support Vector Machines

When the data are separable, SVMs will choose the single optimal w that
maximizes the distance between the decision boundary and the closest
point in each class.

44 | 66



Support Vector Machines

When the data are separable, SVMs will choose the single optimal w that
maximizes the distance between the decision boundary and the closest
point in each class.

Why is this a good idea?
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Support Vector Machines

Maximum margin hyper-planes

Goal: find the hyper-plane that separates training data with largest
margin.

This will tend to generalize better since new observations have room to
fall within margin and still be classified correctly.
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Maximum margin hyper-planes

This can be cast as optimization problem:

maxy, w M
s.t.jw|® =1

y;(b+ w'z;) > M Vi
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Maximum margin hyper-planes

Rewrite optimization problem setting » = 1/)w|? and using a little bit of
algebra (see CIML):

1

ming w— |w|’
2

s.t.yi(b+wxi) > 1Vi
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Maximum margin hyper-planes

: 1 | |2
min -
b,w 9 w

s.tyi(b+wxi) > 1Vi
This Is a constrained optimization problem

Minimize the norm of w under the constraint that it classifies every
observation correctly.
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Non-separable data

The method we have
discussed so far runs .|

Into an important e
complication: ]

What if there is no iy S R -l — — \l —
separating hyper- . .
plane?.
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Non-separable data

The solution is to penalize observations on the wrong side of the
margin by introducing s/ack variables to the optimization problem.

l A
ming, w ¢ Z & + EHWHQ
=1

s.ty;(b+way)) >1—¢ Vi
& >0V
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Non-separable data

l A
ming e Y & + 5wl
i=1

s.ty;(b+way)) >1—¢ Vi
& >0V

A IS a parameter that tradeoffs the width of the margin vs. the penalty on
observations on the wrong side of the margin.

52 /66



Non-separable data

al A
it ) 6+ lIwl°
s.ty;(b+way)) >1—¢ Vi

& >0V

A IS a parameter that tradeoffs the width of the margin vs. the penalty on
observations on the wrong side of the margin.

This is a "data fit + model complexity” loss function.
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Non-separable data

A IS a hyper-
parameter to be .
selected by the user
or via cross-validation
model selection
methods.

Xo
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1 2 -1 0
Xl Xl
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The SVM as a regularized estimation method

. A
minge (1 - gifi)s + 5w’
1=1

If observation =, iIs on the proper side of the margin,

then 4y ~1 and thus @ - y.5). =o.
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The SVM as a regularized estimation method

N
. A
minge (1 - gifi)s + 5w’
1=1

If observation z; is on the proper side of the margin,
then 4 ~1 and thus @ - y.5). =o.

Otherwise, a1 -y7). equals the signed distance to the margin for
observation z,.
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The SVM as a regularized estimation method

N
. A
minge (1 - gifi)s + 5w’
1=1

This formulation makes the connection to SVMs as regularized
estimation procedure much clearer.
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The SVM as a regularized estimation method

N
. A
minge (1 - gifi)s + 5w’
1=1

This formulation makes the connection to SVMs as regularized
estimation procedure much clearer.

The first term corresponds to a "loss function”
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The SVM as a regularized estimation method

N
. A
minge (1 - gifi)s + 5w’
1=1

This formulation makes the connection to SVMs as regularized
estimation procedure much clearer.

The first term corresponds to a "loss function”

The second term a regularization term that controls model complexity.
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Reqgularized Loss
This is a general framework we will see in many algorithms.

We write the models we are learning as solutions to optimization
problems with regularized objective functions

f = argmax L(y, f) + AR(f)

e L(y,f) IS @ loss function, e.g., Y, 1 - uf)-.
* R(f) IS @ reqgularizer, e.g., |w|?
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Reqgularized Loss

Other loss functions:

Zero/one l0SS: L, ) = 1[yf < 0]
* Hinge: (. f) = - v,
LOQIStIC: L(y, ) = 15108(1 + exp —y/)
e Exponential: Ly, f) = exp—uf

e Squared: Ly, f) = (- f)?

61 /66



Reqgularized Loss
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Reqgularized Loss

The reason we like this is that now we have tons of flexibility in learning

models

We can apply gradient descent to our loss and regularizer of choice as
appropriate to specific application
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Reqgularized Loss

Quiz Derive gradient descent for the SVM!
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Support Vector Machines
Different algorithms depending on data size

e Massive number of examples with few predictors, train with stochastic
gradient descent

 Moderate number of examples, use quadratic optimization (later in
semester)

e For guadratic version, can subset observations that could be support
vectors
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Support Vector Machines

State-of-the-art for many applications

We will see later that makign this a non-linear model is very powerful and
straightforward

Very elegant formulation serves as springboard to understand many
models
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