Large Scale Learning

Héctor Corrada Bravo

University of Maryland, College Park, USA
CMSC 643: 2018-11-27

ot Brosaonsancs & Cosruranons Bemogy

® MARYLAND

Large-scale Learning
Analyses we have done in class are for in-memory data:
e Datasets can be loaded onto memory of a single computing node.

Database systems can execute SQL queries, which can be used for
efficient learning of some models (e.g. decision trees) over data on disk

e Operations are usually performed by a single computing node.

1/46

Large-scale Learning

In the 90s database systems that operate over multiple computing nodes
became available

Basis of the first generation of large data warehousing.

In the last decade, systems that manipulate data over multiple nodes
have become standard.

2146

Large-scale Learning

Basic observation

for very large datasets, many of the operations for aggregation and
summarization, which also form the basis of many learning methods, can

be parallelized.

3/46

Large-scale Learning

For example:

e partition observations and perform transformation on each partition as
a parallel process

e partition variables and perform transformation on each variable as a
parallel process

e for summarization (group_by and summarize), partition
observations based on group_by expression, perform summarize
on each partition.

4] 46

Large-scale Learning

Efficiency of implementation of this type of parallelism depends on
underlying architecture:

Shared memory vs. Shared storage vs. Shared nothing

For massive datasets, shared nothing is usually preferred since fault
tolerance is perhaps the most important consideration.

51/46

Map-reduce

Map-Reduce is an implementation idea for a shared nothing architecture.
It is based on:

o distributed storage
e data proximity (perform operaations on data that is physically close)
e fault tolerance.

6 /46

Map-reduce
Basic computation paradigm is based on two operations:

e reduce: perform operation on subset of observations in parallel
e map: decide which parallel process (node) should operate on each
observation

7146

Map-reduce

The fundamental operations that we have learned very well in this class
are nicely represented in this framework: group_by clause corresponds
to map, and summarize function corresponds to reduce.

Input

8 /46

Map-reduce

Map-reduce is most efficient when computations are organized in an
acyclic graph.

Data is moved from stable storage to computing process and the result
moved to stable storage without much concern for operation ordering.

This architecture provides runtime benefits due to flexible resource
allocation and strong failure recovery.

Existing implementations of Map-reduce systems do not support
Interactive use, or workflows that are hard to represent as acyclic
graphs.

9/46

Spark
Recent system based on the general map-reduce framework
Designed for ultra-fast data analysis.

Provides efficient support for interactive analysis (the kind we do in
Jupyter)

Designed to support iterative workflows needed by many Machine
Learning algorithms.

10/ 46

Spark

The basic data abstraction in Spark is the resilient distributed dataset
(RDD).

Applications keep working sets of data in memory and support iterative
algorithms and interactive workflows.

11/ 46

Spark
RDDs are

(1) inmutable and partitioned collections of objects,

(2) created by parallel transformations on data in stable storage (e.g.,
map, filter, group_by, join, ...)

(3) cached for efficient reuse

(4) operated upon by actions defeind on RDDs (count, reduce, collect,
save, ...)

12/ 46

Spark

Fault Tolerance

RDDs maintain /ineage, so partitions can be reconstructed upon failure.

13 /46

Spark
The components of a SPARK workflow

Transformations: Define new RDDs

https://spark.apache.org/docs/latest/programming-
guide.html#transformations

Actions: Return results to driver program

https://spark.apache.org/docs/latest/programming-guide.html#actions

14/ 46

https://spark.apache.org/docs/latest/programming-guide.html#transformations
https://spark.apache.org/docs/latest/programming-guide.html#actions

Spark

Spark was designed first for Java with an interactive shell based on
Scala. It has strong support in Python and increasing support in R
SparkR.

e Spark programming guide:
https://spark.apache.org/docs/latest/programming-guide.html

e More info on python API: https://spark.apache.org/docs/0.9.1/python-
programming-guide.html

15/ 46

https://spark.apache.org/docs/latest/programming-guide.html
https://spark.apache.org/docs/0.9.1/python-programming-guide.html

Stochastic Gradient Descent

Other learning methods we have seen, like regression and SVMs (or
even PCA), are optimization problems

We can design gradient-descent based optimization algorithms that
process data efficiently.

We will use linear regression as a case study of how this insight would
work.

16 / 46

Case Study

Let's use linear regression with one predictor, no intercept as a case
study.

Given: Training set {(z1,), ..., (., %)}, With continuous response 4 and single
predictor -, for the :-th observation.

Do: Estimate parameter » in model y = vz t0 Solve

17146

Case Study

Suppose we want to fit this model to
Simulated Data the following (simulated) data:

40

20

-20

-40

" 18 /46

Case Study

Simulated Data

Our goal is then to find the value of
(w) that minimizes mean squared
error. This corresponds to finding

" one of these many possible lines.

19/ 46

Case Study

Each of which has a specific error
for this dataset:

20/ 46

Case Study

1) As we saw before in class, loss is minimized when the derivative of
the loss function is 0

2) and, the derivative of the loss (with respect to «») at a given estimate w
suggests new values of » with smaller loss!

21 /46

Let's take a look at the

Case Study
derivative:

0oooF 00002 0 00002- 0000F- 00009 00008

ao a0

22 [46

Gradient Descent
This is what motivates the Gradient Descent algorithm

1. Initialize »= normal(0, 1)
2. Repeat until convergence
o Sel w=w+n2l, (i~ fl@))z

23 /46

Gradient Descent

The basic idea is to move the current estimate of «» in the direction that
minimizes loss the fastest.

24 | 46

Gradient Descent

Gradient Descent

LW}
6000 BODD 10000
|

4000

2000
I

20

Let's run GD and track what it does:

25 /46

Gradient Descent

"Batch" gradient descent: take a step (update) by calculating derivative
with respect to all » observations in our dataset.

w=w-+ 17§:(yZ — f(zi, w))z;

1=1

where f(z;) = wa;.

26 [46

Gradient Descent

For multiple predictors (e.g., adding an intercept), this generalizes to the
gradient

wW=w-+ nZ(yl — f(x, W))x;

1=1

where f(xi, W) = wo +wizi + - -+ + wpsp

27 146

Gradient Descent

Gradiest descent falls within a family of optimization methods called first-
order methods (first-order means they use derivatives only). These
methods have properties amenable to use with very large datasets:

1. Inexpensive updates

2. "Stochastic" version can converge with few sweeps of the data
3. "Stochastic" version easily extended to streams

4. Easily parallelizable

Drawback: Can take many steps before converging

28 [46

Stochastic Gradient Descent

Key Idea: Update parameters using update equation one observation at
a time:

1. Initialize g = normal(o, \/7), i =1
2. Repeat until convergence
o Fori=1ton
o Set w=w+n(y— f(xi,w))x;

29 /46

Stochastic Gradient Descent

Let's run this and see what it does:

Gradient Descent

LW}
6000 BODD 10000
|

4000

2000
I

-20 -10 0 10 20

30/46

Stochastic Gradient Descent

Why does SGD make sense?

For many problems we are minimizing a cost function of the type

1
arg m}n . XZ: L(yi, fi) + AR(f)

Which in general has gradient

3 VoL, f) + AVSR(S)

31/46

Stochastic Gradient Descent

% Z VL(yi, f;) + AV R(f)

The first term looks like an empirical estimate (average) of the gradient
at f,

SGD then uses updates provided by a different estimate of the gradient
based on a single point.

e Cheaper
e Potentially unstable

32 /46

Stochastic Gradient Descent
In practice

e Mini-batches: use ~100 or so examples at a time to estimate
gradients
e Shuffle data order every pass (epoch)

33 /46

Stochastic Gradient Descent

SGD easily adapts to data streams where we receive observations one
at a time and assume they are not stored.

This setting falls in the general category of online learning.

Online learning is extremely useful in settings with massive datasets

34 /46

Stochastic Gradient Descent
Parallelizing gradient descent

Gradient descent algorithms are easily parallelizable:

e Split observations across computing units
e For each step, compute partial sum for each partition (map), compute
final update (reduce)

W =W+ 7 x* Z Z(yi—f(xi,w))xi

partition q i€q

35/46

Stochastic Gradient Descent

This observation has resulted in their implementation if systems for
large-scale learning:

1. Vowpal Wabbit
o Implements general framework of (sparse) stochastic gradient
descent for many optimization problems

36 /46

https://github.com/JohnLangford/vowpal_wabbit/wiki

Stochastic Gradient Descent

This observation has resulted in their implementation if systems for
large-scale learning:

1. Vowpal Wabbit

o Implements general framework of (sparse) stochastic gradient
descent for many optimization problems

2. Spark MLIib

o Implements many learning algorithms using Spark framework we

saw previously
37 /46

https://github.com/JohnLangford/vowpal_wabbit/wiki
https://spark.apache.org/docs/1.2.1/mllib-guide.html

Sparse Regularization

For many ML algorithms prediction time-efficiency is determined by the
number of predictors used in the model.

Reducing the number of predictors can yield huge gains in efficiency in
deployment.

The amount of memory used to make predictions is also typically
governed by the number of features. (Note: this is not true of kernel
methods like support vector machines, in which the dominant cost is the
number of support vectors.)

38 /46

Sparse Regularization
The idea behind sparse models, and in particular, sparse regularizers.

A disadvantage of optimizing problems of the form

> Lys, w) + Alw|’

That they tend to never produce weights that are exactly zero.

39 /46

Sparse Regularization

Instead, minimize problems of the form

where |uwll, = 3w,

40 / 46

Sparse Regularization
This Is a convex optimization problem.
Can use standard subgradient methods.

See CIML for further details.

41/ 46

Feature Hashing

For data sets with a large number of features/attributes an idea based on
hashing can also help.

Suppose we are building a model over r features (» very large). We use
hashing to reduce the number of features to smaller number ».

For each observation = ¢ r” we transform it into observation z < re.

We will use hash function n.p—

42 | 46

Feature Hashing

Initialize z = (,o0,...,0)
For each je1,....pP

e Hash ; to position & = ()
o Update z;, « z + =,

Return z

We can think of this as a feature mapping

43 [46

Feature Hashing

To see how what this does, we can see what the inner product between
observations in the smaller feature space is:

¢(m)/¢(z)_Z[2 ‘"’“'” Z(k)Zj/]

ko Ldlich (k) Jlien
= E E ijj/
ko j4,5'05,5€h (k)
=Y D =

i Jlier(h(j))

/
= E Tjzj + E TjzZj =T Z+ -

J #3515 €h™ (h(5))

44 | 46

Feature Hashing

So, we get the inner product in the original large dimensions plus an
extra quadratic term

$x)p(z) =x'z+ Y 3z

7#5li'eh (h(5))

e \We might get lucky and get a useful interaction between two features
e Nonetheless, the size of this sum is very small due to property of
hash functions: expected value of product is ~o

45 [46

Large-Scale Learning

e Database operations for out-of-memory datasets

o Parallelization on shared-nothing architectures (map reduce)

e Spark as MR framework also supporting iterative procedures
(optimization)

e Stochastic gradient descent (many low cost steps, easy to parallelize)

e Sparse models (build models with few features)

e Feature Hashing (build models over smaller number of features,
retain inner product)

46 / 46

