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Support Vector Machines

Let's recall the SVM optimization problem

S G
) W]

s. tyi(b + wxi) > 1 Vi

This Is a constrained optimization problem

Minimize the norm of w under the constraint that it classifies every
observation correctly (on the proper side of the margin).
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Support Vector Machines

We can switch between equivalent constrained minimization and
constrained maximization problems.

In the maximum-margin hyper-plane case, the equivalent constrained
maximization problem (the dual problem) is:
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Support Vector Machines

N | NN
maXe Y, O~ EZ > Oi0KYiYkX;Xk
=1 i=1 k=1

s.t.a; > 0 V1

This quadratic optimization problem is usually easier to optimize than the
original problem (notice there is only positivity constraints on o).

We can use Projected Gradient Descent, where after each step we
ensure that all «,>0 by setting any « <o to O.
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Support Vector Machines
An important result is then that

Key insight. SVMs only depend on pairwise "similarity"” functions of
observations

N N N
1

maxy Y. o — ) > D aiak}’i}’kx;xk
i=1 i=1 k=1

s.t.a; =0 V1

Only inner products between observations are required as opposed to
the observations themselves.
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Support Vector Machines

Also, we can write the discriminant function in equivalent form

n
f(x) =b+Y yioixx;
-1

Geometrically, we can think of the inner product between observations
as a "similarity" measure.

Therefore, we can fit these models with other measures that works as
"similarities".
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Support Vector Machines
This leads to another important point:

Key insight. SVMs only depend on a subset of observations (support
vectors)

Optimal solutions », w and « must satisfy the following condition:

0i[yi(b + wxi) — 1] = 0 Vi.
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Support Vector Machines

0i[yi(b + wxi) — 1] = 0 Vi.

Case 1: o, >0, then the signed distance between observation x, and the
decision boundary is 1.

This means that observation x, Is on the margin
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Support Vector Machines

0i[yi(b + wxi) — 1] = 0 Vi.

Case 2: yb+wx) > 1, then observation x; Is not on the margin and « =o.
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Support Vector Machines

To define the discriminant function in terms of «s we only need
observations that are on the margin,

l.e., those for which ¢ >o.
These are called support vectors.

Also implies we only need Support Vectors to make predictions.
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Non-separable data

Let's review the SVM problem for non-separable data:

NN
ming e ¥ &+ = Iwl’
i=1 2
s.tyib+wx)>1-§ Vi
& >0Vi
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Non-separable data

An elegant result is that this formulation doesn't change the dual problem
we saw before very much:
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Non-separable data

Only need support vectors, where o >0 to define the discriminant function
and make predictions.

The larger the penalty parameter 1, the learned SVM will have fewer
support vectors.

Think of the number of support vectors as a rough measure of the
complexity of the SVM obtained.
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Non-linear Support Vector Machine

What to do when we need non-
*] ] “/ . linear partitions of predictor space to
| /" get a classifier?
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Non-linear Support Vector Machine

Two options:

. . </ . Construct non-linear features from
A original features

Kernel methods (in a second)
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Tangent: Feature Construction

Centering and scaling

Given data x=x,.x. ....x,, the 15000 -

transformation applied to obtain

centered and scaled variable ; iIs:

10000 1

(Xi —X)
Zi =
sd(x)

count

where x is the mean of data x, and .
sdx) IS 1tS standard deviation.
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Tangent: Feature Construction
Another name for this transformation is to standardize a variable.

Quiz: What is the mean of ;? What is it's standard deviation?

L (i—x)

sd(x)
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Tangent: Feature Construction

One useful result of applying this transformation to variables in a dataset
Is that all variables are in the same, and thus comparable units.

On occasion, you will have use to apply transformations that only center
(but not scale) data:

zi = (Xi — ;)

Quiz: what is the mean of z in this case? What is it's standard deviation?
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Tangent: Feature Construction

Or, apply transformations that only scale (but not center) data:

Xj

Zi =
sd(xi)

Question: what is the mean of ; in this case? What is it's standard
deviation?
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Tangent: Feature Construction
Skewed Data
In many data analysis,

variables will have a skewed
distribution over their range.

2e+05 1

count

Applying a transformation to
reduce skew can improve fer059
prediction performance.

0e+00 -
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Tangent: Feature Construction

Skewed data

Logarithmic transform
75000

If some values are negative,

two options <000

count

Started Log: shift all values
so they are positive, apply 250001
log?2 Signed Log:

sign(x) x log2(abs(x) + 1).
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Tangent: Feature Construction

Non-linear Transforms

Besides these "normalizing" transformations, we can construct features
to induce non-linearity in our models.

Polynomial transformations: given feature x, use features x,x2x’ in linear
model

Interaction features: combine features using products in linear model,
e.g., include feature xx;, etc.
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Non-linear Support Vector Machine

Kernel Methods provide a different way of doing this.

We can define the SVM discriminant function in terms of inner products

of observations.

We can generalize inner product using "kernel" functions that provide
something like an inner product:

f(x) =b+2 yiok(x,x;)
-1
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Non-linear Support Vector Machine

But, what is «? Let's consider two
examples.

X

o Polynomial kernel. xx,x)=1+x,xp .

 RBF (radial) kernel.

k(x, xj) = exp{~y ZJPZI (x; — x;)*}
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Non-linear Support Vector Machine

RBF kernel
o ]
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Non-Linear Support Vector Machine

Quiz Show that using 4=2 with a polynomial kernel is equivalent to using
a quadratic transformation on the input features
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Non-linear Support Vector Machine

The optimization problem is very similar

N N N

max, Y o — EZ Y. oioyiyik(xi, Xg)
=1 =1 k=1

|
s.t.0<oq <—Vi
A

26 [ 52



SVM classification example

Let's try fitting SVMs to the credit card default dataset we saw in
previous examples.

Let's start with a linear SVM (where « is the inner product).
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SVM classification example

Here we are fitting three different SVMs resulting from using three
different values of cost parameter c

1
}\‘ L]

cost number svs train_error test error

1le-02 337 3.3 3.36
1e+00 338 3.3 3.36
1le+02 341 3.3 3.36
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SVM classification example
Let's try now a non-linear SVM by using a radial kernel.

Notice now that we have two parameters to provide to the fitting function:
cost parameter ¢ and parameter y of the radial kernel function.
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SVM classification example

cost gamma number_svs train_error test_error

0.01 0.01 332 3.30 3.36
1.00 0.01 349 3.30 3.36
10.00 0.01 341 3.30 3.36
0.01 1.00 394 3.30 3.36
1.00 1.00 436 2.74 2.74
10.00 1.00 392 2.64 2.78
0.01 10.00 481 3.30 3.36
1.00 10.00 1133 2.44 2.92
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The SVM as a regularized estimation method

Recall the regularized estimation formulation for the SVM:

Y A
mingy, Y. (1 —yifi)+ + EIIWII2
i=1

If observation x, Is on the proper side of the margin,
then v >1 and thus a - y;fi). =o.

Otherwise, (-yif). equals the signed distance to the margin for
observation x,.
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The SVM as a regularized estimation method

In the non-linear case we can write it as equivalent problem as

Y A
minyq . (I —yifi)+ + EU’KOL
=1
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Kernelized Logistic Regression

We can use the same "loss + penalty" formulation to obtain a kernelized
version of logistic regression:

N
ming, g > log(l+ e Vi) + %a'Ka
i=1
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Kernelized Logistic Regression

As before, function r has a linear expansion in terms of the kernel
function:

N
fx)=b+> ok(x,x;)
i=1
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Kernelized Logistic Regression

As before, function r has a linear expansion in terms of the kernel
function:

N
fx)=b+> ok(x,x;)
i=1

Unlike the SVM, the logistic regression loss function does not tend to set
o =0 for correctly classified observations.
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Kernelized logistic regression

The loss function in the first
term of the formulation is
called "Hinge-loss".

— Hinge Loss
—— Logistic

We can compare it with the
likelihood function for logistic
regression.

Loss
2
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Kernelized Logistic Regression

As before, function r has a linear expansion in terms of the kernel
function:

N
fx)=b+> ok(x,x;)
i=1

Nonetheless, function r retains the interpretation in logistic regression

Pr(Y =+1|X =x)

)= Sy =X =x)
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Kernelized Regression

In similar fashion, we could build non-linear regression models using the
"kernel trick" by using least squares as the loss function when predicting
continuous outcomes.

) X
mmhaZ(w—ﬁf+3dKa
i=1
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Kernelized Regression

Again, function r has a linear expansion in terms of the kernel function

N
fx)=b+> ok(xi,Xx)
i=1
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Kernelized Regression

This does not lead to sparse representations over a subset of
observations like SVMs.

However, a different choice of loss function, similar to hinge loss, can
lead to sparse representations.
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Support Vector Regression

Support Vector Regression refers to the "loss + penalty" formulation
when insensitive loss Is used:

(0 if|r <€
Ve(r) =
[l —€  otherwise
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Support Vector Regression

We can compare
(\epsilon)-insensitive
o - loss to squared loss

—— ¢-insensitive
—— squared

Loss
1 2 3 4 5
| | | | |
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Applications: Modeling labeled data sequences

Consider the case where
predictors for observations
are structured as sequences.

18 20 25 30 35 40 45 =0

For instance, predictors |
correspond to some variable Yine
measured over time.
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Modeling labeled data sequences

In this case, each
observation is represented
by a time series

data

18 20 25 30 35 40 45 =0

we want to discriminate
between time series that " Fine
belong to two different

classes.
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Modeling labeled data sequences

Using the results above, we could model this using a Support Vector
Machine, providing a kernel that captures similarity between time series.

Some proposals for this include:

e Autoregressive kernels: Cuturi, Doucet (2011)
https://arxiv.org/abs/1101.0673.

The likelihod of a vector autoregressive model is used to create a
similarity metric.
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Modeling labeled data sequences

Using the results above, we could model this using a Support Vector

Machine, providing a kernel that captures similarity between time series.

Some proposals for this include:

e Dynamic Time Warping Kernel: Shimodaira (2002)
https://papers.nips.cc/paper/2131-dynamic-time-alignment-kernel-in-
support-vector-machine.pdf.

A warping method is used to define distances between data series
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Modeling labeled data sequences

* Reservoir Computing: /\/\ANV\/\ VW/\/\/\/\/

Chen et al.

- N\ /
http://dl.acm.org/citation.ct P S
id=2487700. o= AN R

| ® m— CooIIInee
Reservoir state models are = ‘ i /
] _ \ - re /; Readout Mapping
used to represent time series \ /
and derive kernels Readout
Mapping X X
Space Deterministic
and fixed

“““ Trained
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Structured Output

The "loss + penalty" representation also allows additional flexibility in the
types of outcomes that are predicted.

For instance, consider the case where outcomes are numerical vectors
vi = (vii.vis ..., vir) TOF €ach observation

along with predictors x, as before.
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Structured Output

In this case, we would use function r to represent a vector as well:

N
f(x) = o1 + 2 oi1k(xi, X)
i=1
N

ag2 T, apk(xi, X)
-1

N

aor T oirk(xj, X))
i=1
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Summary

The general "loss + penalty" formulation along with kernel methods are
capable of capturing a wide array of learning applications.
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Summary

The general "loss + penalty" formulation along with kernel methods are
capable of capturing a wide array of learning applications.

A number of effective methods to represent similarities between data
series, e.g., time series, as kernel functions allows the usage of this
framework to those types of problems.
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Summary

The general "loss + penalty" formulation along with kernel methods are
capable of capturing a wide array of learning applications.

A number of effective methods to represent similarities between data
series, e.g., time series, as kernel functions allows the usage of this
framework to those types of problems.

Structured output formulations are applicable to learn multivariate
outcomes with dependency structure between the components of the
outcomes.
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