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Unsupervised Learning

Unsupervised data: characterize patterns in predictor space where
observation measurements are represented.

Mathematically, characterize rrx) over ,-dimensional predictor space.

Clustering methods assume that this space rrx) can be partitioned into
subspaces containing "similar" observations.
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Unsupervised Learning: Dimensionality Reduction

Dimensionality reduction: assume observations can be represented in a
space with dimension much lower than ».

We will see two general strategies for dimensionality reduction:

e data transformations into spaces of smaller dimension that capture
global properties of a data set x,

e data embeddings into lower dimensional spaces that retain local
properties of a data set x.
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Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction
method.

Goal: embed data in high dimensional space (e.g., observations with a
large number of variables), onto a small number of dimensions.
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Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction
method.

Goal: embed data in high dimensional space (e.g., observations with a
large number of variables), onto a small number of dimensions.

Most frequent use is in Exploratory Data Analysis and visualization

Also be helpful in regression (linear or logistic) where we can transform
Input variables into a smaller number of predictors for modeling.

5/65



Principal Component Analysis
Mathematically, the PCA problem is:

Given:

e Data set x,,x,,...,x,}, Where x; 1S the vector of , variable values for the -
th observation.

Return:

o Matrix j¢1,¢s,...,4,] Of linear transformations that retain maximal variance.
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Principal Component Analysis

Think of the first vector ¢, as a linear transformation that embeds
observations into 1 dimension:

Z1 = ouXi + ¢pnXo+ -+ P X,

where ¢, Is selected so that the resulting dataset {,...,z,} has maximum

variance.
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Principal Component Analysis
In order for this to make sense mathematically:
e data has to be centered, i.e., each x, has mean equal to zero

e transformation vector ¢, has to be normalized, i.e., y-7_ ¢ =1.
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Principal Component Analysis

Find ¢, by solving optimization problem:

1 & i
max 5 ; ; (; ¢j1wij)

¢117¢217- - @pl

P
s. t. Z qb?l =1
j=1

9/65



Principal Component Analysis

Conceptually: maximize variance but subject to normalization constraint.

The second transformation 4, is obtained next solving a similar problem
with the added constraint that 4, is orthogonal to 4,.
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Principal Component Analysis

Taken together [4,,4,) define a pair of linear transformations of the data
Into 2 dimensional space.

Lpxo = anp[¢1a ¢2]p><2
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Principal Component Analysis
Each of the columns of the z matrix are called Principal Components.

The units of the PCs are meaningless.

In particular, comparing numbers across PCs doesn't make
mathematical sense.
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Principal Component Analysis

In practice, may also use a scaling transformation on the variables x; to
have unit variance.

In general, if variables x; are measured in different units (e.g, miles vs.
liters vs. dollars), variables should be scaled to have unit variance.

Conversely, if they are all measured in the same units, they should be
scaled.
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Principal Component Analysis

Mortgage affordability data
embedded into the first two
. . principal components.
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Principal Component Analysis

A natural question that arises: How many PCs should we consider in
post-hoc analysis?

One result of PCA is a measure of the variance corresponding to each
PC relative to the total variance of the dataset.

From that calculate the percentage of variance explained for the w-th PC:

n 2
.2
PVE,, = 2.i=1 Fim

o P n 2
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Principal Component Analysis

Pct. Variance Explained
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We can use this measure to
choose number of PCs in an
ad-hoc manner. In our case,
using more than 10 or so
PCs does not add
iInformation.
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Principal Component Analysis
A useful rule of thumb:

 If no apparent patterns in first couple of PCs, stop!
e Otherwise, look at other PCs using PVE as guide.
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Principal Component Analysis
A useful rule of thumb:

 If no apparent patterns in first couple of PCs, stop!
e Otherwise, look at other PCs using PVE as guide.

There are bootstrap based methods to perform a statistically guided
selection of the number of PCs.
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Principal Component Analysis
A useful rule of thumb:

 If no apparent patterns in first couple of PCs, stop!
e Otherwise, look at other PCs using PVE as guide.

There are bootstrap based methods to perform a statistically guided
selection of the number of PCs.

However, there is no commonly agreed upon method for choosing

number of PCs used in practice, and methods are somewhat ad-hoc.
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Solving the PCA

The Principle Component solutions ¢ are obtained from the singular
value decomposition of observation matrix x,., = vpv?
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Solving the PCA

The Principle Component solutions ¢ are obtained from the singular
value decomposition of observation matrix x,., = vpv?

Matrices v and v are orthogonal matrices, vTv=rand v7v =1

Called the left and right singular vectors respectively.
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Solving the PCA

The Principle Component solutions ¢ are obtained from the singular
value decomposition of observation matrix x,., = vpv?

Matrices v and v are orthogonal matrices, vTv=rand v7v =1

Called the left and right singular vectors respectively.

p IS a diagonal matrix with 4 >4, > ...4, >0. These are referred to as the

singular values.
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Solving the PCA

Using our previous notation v is the transformation matrix v = (¢,,¢s,---, ,.

Principal components z are given by the columns of vp. Since v is
orthogonal, «2 equals the variance of the jth PC.
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Solving the PCA

From this observation we also see that we can write original
observations z; in terms of PCs . and transformations .

Specifically

T; = 21 + zinPa + - -+ Zipdy

24 [ 65



Solving the PCA

We can think of the ¢, vectors as a basis over which we can represent
original observations ..

For this reason, another useful post-hoc analysis is to plot the
transformation vectors g,,4,,....
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Here we plot the mean time series (since we center observations x

before performing the embedding) along with the first three 4, vectors.
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Kernel PCA

There is a connection between the singular value decomposition of x
and the eigenvalue decomposition of xx7 such that

xxT =up*vu”

Notice that the ijth position of matrix xx7 is the inner product zz;,.
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Kernel PCA

As we saw before, we can use certain functions, kernel functions, In
place of inner products

e induce non-linearities in learning methods,
e apply methods where we can obtain "similarity" functions directly.
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Kernel PCA

Given a kernel matrix x, we obtain the eigenvalue decomposition of a
"centered" kernel matrix

K=(I-MKI-MT=UDU
Where m =117/n.

The principal components are obtained as before z-uvp.
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Kernel PCA

We apply kernel PCA using a radial basis function kernel
k(z,z;) = eXP{—”rZ(fcj —xi5)°}

with various values of parameter ,.
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Kernel PCA
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Kernel PCA

As usual in unsupervised learning, there is no principled way of choosing
appropriate kernel functions or parameters other than ad-hoc
observation of the resulting embeddings.
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Multidimensional Scaling

Multidimensional scaling is a similar approach to PCA but looks at the
task in a little different manner.

Given observations «,,...,zy IN p dimensions, let ¢, be the distance
between observations : and ;. We may also use this algorithm given
distances initially instead of , dimensional observations.
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Multidimensional Scaling

Multidimensional scaling is a similar approach to PCA but looks at the
task in a little different manner.

Given observations «,,...,zy IN p dimensions, let ¢, be the distance
between observations : and ;. We may also use this algorithm given
distances initially instead of , dimensional observations.

Multidimensional Scaling (MDS) seeks to find embeddings ,,...,zv Of &
dimensions for which Euclidean distance (in » dimensional space) is
close to the input distances q;,.
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Multidimensional Scaling

In least squares MDS, we can do this by minimizing

Su(z1y-- -, o) =Y (dij — |1z — 2l])°

i#j

A gradient descent algorithm is used to minimize this function.
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Multidimensional Scaling

A related method that tends to better capture small distances is given by
the Sammon mapping:
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Manifold learning and local embedding

PCA seeks to maximize variance of observations in the lower
dimensional embedding.

Intuitively, that will result in faithfully capturing large distances between
observations in predictor space.
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Manifold learning and local embedding

PCA seeks to maximize variance of observations in the lower
dimensional embedding.

Intuitively, that will result in faithfully capturing large distances between
observations in predictor space.

Similarly, MDS attempts to capture all pairwise distances between
observations.

38 /65



Manifold learning and local embedding

In some applications, this is not ideal, and methods that preserve /ocal
properties may be better suited.

A classical example is when observations lie in a smaller dimensional
subspace of predictor space.
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Methods that capture local structure are often able to better capture
these subspaces.
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Locally-Linear Embedding

A significant advance in manifold learning was achieved by the Locally-
Linear Embedding method.

The intuition behind the method is that to capture local properties of the
data in high-dimension, we should concentrate on preserving distances
of neighbors in high-dimensional space,

41 / 65



Locally-Linear Embedding

In LLE, this is achieved by approximating each data point by linear
combinations of neighboring points.

Then choose a lower dimensional embedding that best preserves these

local approximations.
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Locally-Linear Embedding
The algorithm is as follows:

e For each observation =, in , dimensions, find its x nearest neighbors
N ().

e Approximate each observation as a linear combination of its
neighbors by solving

. 2
min [|z; — Y wies
keN (i)

Add constraints w; =o If k¢ &) and Y wy, =1.
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Locally-Linear Embedding
These amounts to solving many small least squares problems.

Also note that & <, for the least squares problems to have a solution.
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Locally-Linear Embedding

e Given these local approximations, now find a low-dimensional
embeddings : that approximates these well by minimizing

N

N
DMl =3 wam?
i—1 k=1
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Locally-Linear Embedding

The solution to this problem is given by the eigenvalue decomposition of

matrix

(I-w)'(I-W)

where w IS the ~ x ¥ approximation matrix.
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t-Distributed Stochastic Neighbor Embedding

Building on ideas from LLE, we arrive at a recent, very popular,
embedding method.

t-SNE was designed to address a shortcoming of LLE where neighbors
tended to crowd each other in the embedded space.
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t-Distributed Stochastic Neighbor Embedding

For example, this is a LLE embedding of the MNIST digits dataset

(b) Visualization by LLE.

Figure 3: Visualizations of 6,000 handwritten digits from the MNIST data set.
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t-Distributed Stochastic Neighbor Embedding

The two main ideas behind t-SNEs approach to solve the overcrowding
problem are as follows:

e instead of linear approximations over neighbors use local density
estimates based on a normal distribution;

e embed these density estimates to low dimension but use a heavier
tailed distribution to overcome the crowding problem.
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t-Distributed Stochastic Neighbor Embedding

Instead of operating directly over Euclidean distances in high-dimension

In t-SNE we operate over conditional probability distributions based on
Euclidean Distance.

Define

exp{—||zi — z;[|*/207}
Zk# exp{—||z; — zx/|?/207}

Djji =
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t-Distributed Stochastic Neighbord Embedding

One way of performing an embedding is to define conditional probability
distributions on the lower dimensional space

0 — exp{—||zi — z*}
=
e~z — a2}
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t-Distributed Stochastic Neighbor Embedding

Minimize a divergence measure, e.g. Kullback-Liebler, between the two
distributions

ZKL(HHQ Z Zpﬂ log 2

ajli
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t-Distributed Stochastic Neighbor Embedding

Minimize a divergence measure, e.g. Kullback-Liebler, between the two
distributions

ZKL(HHQ Z Zpﬂ log 2

ajli

A gradient method can be used to minimize this loss function.
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t-Distributed Stochastic Neighbor Embedding

To overcome the crowding problem t-SNE uses two approaches.

First: notice that the conditional probabilities are not symmetric

Dji ?é Di|;
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t-Distributed Stochastic Neighbor Embedding

To address this, joint probability distributions are defined

~exp{—|lzi —z;]*/207}
> €xp{— |z — 2]|?/207}

Dij

and

o efa -l
N Zk# exp{—||zx — 2|*}
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t-Distributed Stochastic Neighbor Embedding

KL divergence between the two joint probability distributions is minimized

0= KLPIQ) = 3 ¥ pyos 2
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t-Distributed Stochastic Neighbor Embedding

KL divergence between the two joint probability distributions is minimized

C =KL(P||Q) = Zijlog—
The gradient of this divergence has a very simple form

oC
o 4 ;(Pij — qi5)(zi — 2j)
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t-Distributed Stochastic Neighbor Embedding

Second, instead of a normal distribution to define the joint probabilities 4,

In the embedding space, a longer tailed : distribution with one degree of
freedom is used:

N R
1) — -
S+ [z — 2l?)
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t-Distributed Stochastic Neighbor Embedding

KL divergence is again minimized, with slightly different gradient

oC )
5 =42 — a)(z — 2) (A + |z — 5l
Z j
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Here is the result of t-SNE on the MNIST digits data for which we
showed the LLE result previously.
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(a) Visualization by t-SNE.
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t-Distributed Stochastic Neighbor Embedding

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Data: data set X = {x;,%2,....%n },

cost function parameters: perplexity Ferp,

optimization parameters: number of iterations T, learning rate 1, momentum ci(t).
Result: low-dimensional data representation 97 = {¥1.02: s ¥in b

begin

compute pairwise affinities p i with perplexity Perp (using Equation 1)

Byt Py
set pjj = —=5—

LM
sample initial solution ' = {¥1,¥24 00 ¥ } from A(0,107°1)
for =1 to T do
compute low-dimensional affinities g;; (using Equation 4)
compute gradient % (using Equation 3)
get :r}r:z} — ﬂr-_’r- 1) -'-T'I% 4+ IIIII:I {D.r[r 1) _ ._-;,r-fr- -2:}
end
end
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t-Distributed Stochastic Neighbor Embedding

The parameter Perplexity is used to set parameter - in the high-
dimensional joint distribution, and is expressed roughly as the average

number of neighbors contributing to the conditional probability
distribution estimate.
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t-SNE on affordability
time series data with
a perplexity
parameter of 7.

Observations colored
using the K-means
algorithm on the two
dimensional
embedding.
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Timeseries in the resulting clusters over the tSNE embedding.
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Summary

Principal Component Analysis is a conceptually simple but powerful EDA
tool. It is very useful at many stages of analyses.

PCA interpretation can be very ad-hoc, however. It is part of large set of
unsupervised methods based on matrix decompositions, including
Kernel PCA, Non-negative Matrix Factorization and others.

Embedding methods seek to capture local properties of observations. A
popular recent method is the t-SNE method.
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