
Deep	Learning
Héctor	Corrada	Bravo

University	of	Maryland,	College	Park,	USA
CMSC	643:	2017-11-07

Loading	[MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Deep	Feed-Forward	Neural	Networks
The	general	form	of	feed-forward
network	can	be	extended	by	adding
additional	hidden	layers.

Deep	Feed-Forward	Neural	Networks
The	same	principles	we	saw	before:

We	arrange	computation	using	a
computing	graph

Use	Stochastic	Gradient	Descent

Use	Backpropagation	for	gradient
calculation	along	the	computation
graph.

Deep	Feed-Forward	Neural	Networks
Empirically,	it	is	found	that	by	using
more,	thinner,	layers,	better
expected	prediction	error	is
obtained.

However,	each	layer	introduces
more	linearity	into	the	network.

Making	optimization	markedly	more
difficult.

Deep	Feed-Forward	Neural	Networks
We	may	interpret	hidden	layers	as
progressive	derived	representations
of	the	input	data.

Since	we	train	based	on	a	loss-
function,	these	derived
representations	should	make
modeling	the	outcome	of	interest
progressively	easier.

Deep	Feed-Forward	Neural	Networks
In	many	applications,	these	derived
representations	are	used	for	model
interpretation.

Deep	Feed-Forward	Neural	Networks
Advanced	parallel	computation	systems	and	methods	are	used	in	order
to	train	these	deep	networks,	with	billions	of	connections.

The	applications	we	discussed	previously	build	this	type	of	massive	deep
network.

Deep	Feed-Forward	Neural	Networks
Advanced	parallel	computation	systems	and	methods	are	used	in	order
to	train	these	deep	networks,	with	billions	of	connections.

The	applications	we	discussed	previously	build	this	type	of	massive	deep
network.

They	also	require	massive	amounts	of	data	to	train.

Deep	Feed-Forward	Neural	Networks
Advanced	parallel	computation	systems	and	methods	are	used	in	order
to	train	these	deep	networks,	with	billions	of	connections.

The	applications	we	discussed	previously	build	this	type	of	massive	deep
network.

They	also	require	massive	amounts	of	data	to	train.

However,	this	approach	can	still	be	applicable	to	moderate	datasizes
with	careful	network	design,	regularization	and	training.

Regularization	of	Deep	NNs
Regularization	by	penalizing	parameter	norm	is	frequently	used	in	these
cases.

The	obective	function	to	minimize	in	this	case	is

J(θ; X, y) = L(θ; X, y) + λΩ(θ)

Regularization	of	Deep	NNs
Regularization	by	penalizing	parameter	norm	is	frequently	used	in	these
cases.

The	obective	function	to	minimize	in	this	case	is

	includes	all	parameters	of	the	network

	is	a	task	appropriate	loss	function	(e.g.	least	squares	for	regression)

	is	a	penalty	function	on	the	parameters

J(θ; X, y) = L(θ; X, y) + λΩ(θ)

θ

L

Ω

Regularization	of	Deep	NNs
Commonly	used	functions	are

L2	normalization,	 	for	all	weight	parameters	

L1	normalization,	 	for	all	weight	parameters	

In	both	of	these	cases,	SGD	is	easily	adapted.

Ω(θ) = ∑ w2
kl

wkl

Ω(θ) = ∑ |wkl| wkl

Early	Stopping
Another	technique	frequently	used
to	regularize	models	is	early
stopping.

Early	Stopping
This	is	based	on	the	empirical
observation	that	as	more	training	is
done,	overfitting	becomes	worse.

Early	Stopping
There	are	meta-algorithms	designed
to	determine	when	to	stop	training
based	on	improvement	of	expected
prediction	error,	and	the	rate	at
which	parameter	models	change
between	training	iterations.

Dropout
A	popular	method	for
regularization,	that	also
addresses	the	multiple
minimum	problem	is	dropout.

Dropout
Bagging	is	used	to	build	an
ensemble	of	specifically
constructed	networks.

Dropout
In	this	case,	subnetworks	of
the	network	being	trained
are	selected	randomly.

Each	network	is	trained
independently	on	a	bootstrap
sample	of	data.

Averaging	is	used	to
combine	predictions.

Long-term	Dependencies
A	significant	issue	in	training	deep	networks.

As	deeper	networks	are	used,	multiplication	of	gradients	causes	major
issues.

Long-term	Dependencies
Consider	the	case	of	a	computational	graph	where	a	weight	matrix	 	is
repeatedly	multiplied.

W

Long-term	Dependencies
Consider	the	case	of	a	computational	graph	where	a	weight	matrix	 	is
repeatedly	multiplied.

Suppose	matrix	 	has	eigen-value	decomposition	

W

W W = V diag(λ)V ′

Long-term	Dependencies
Consider	the	case	of	a	computational	graph	where	a	weight	matrix	 	is
repeatedly	multiplied.

Suppose	matrix	 	has	eigen-value	decomposition	

After	 	steps,	we	obtain	matrix	

W

W W = V diag(λ)V ′

t W t = V diag(λ)tV ′

Long-term	Dependencies
Consider	the	case	of	a	computational	graph	where	a	weight	matrix	 	is
repeatedly	multiplied.

Suppose	matrix	 	has	eigen-value	decomposition	

After	 	steps,	we	obtain	matrix	

What	do	we	expect	to	happen	to	weights?

W

W W = V diag(λ)V ′

t W t = V diag(λ)tV ′

Supervised	Pre-training
A	clever	idea	for	training	deep
networks.

Train	each	layer	successively	on	the
outcome	of	interest.

Use	the	resulting	weights	as	initial
weights	for	network	with	one	more
additional	layer.

Supervised	Pre-training
Train	the	first	layer	as	a	single	layer
feed	forward	network.

Weights	initialized	as	standard
practice.

This	fits	 .W 1
h

Supervised	Pre-training
Now	train	two	layer	network.

Weights	 	are	initialized	to	result	of
previous	fit.

W 1
h

Supervised	Pre-training
This	procedure	continues	until	all	layers	are	trained.

Hypothesis	is	that	training	each	layer	on	the	outcome	of	interest	moves
the	weights	to	parts	of	parameter	space	that	lead	to	good	performance.

Minimizing	updates	can	ameliorate	dependency	problem.

Supervised	Pre-training
This	is	one	strategy	others	are	popular	and	effective

Train	each	layer	as	a	single	layer	network	using	the	hidden	layer	of
the	previous	layer	as	inputs	to	the	model.

In	this	case,	no	long	term	dependencies	occur	at	all.

Performance	may	suffer.

Supervised	Pre-training
This	is	one	strategy	others	are	popular	and	effective

Train	each	layer	as	a	single	layer	on	the	hidden	layer	of	the	previous
layer,	but	also	add	the	original	input	data	as	input	to	every	layer	of	the
network.

No	long-term	dependency

Performance	improves

Number	of	parameters	increases.

Parameter	Sharing
Another	method	for	reducing	the	number	of	parameters	in	a	deep
learning	model.

When	predictors	 	exhibit	some	internal	structure,	parts	of	the	model	can
then	share	parameters.

X

Parameter	Sharing
Two	important	applications	use	this	idea:

Image	processing:	local	structure	of	nearby	pixels
Sequence	modeling:	structure	given	by	sequence

The	latter	includes	modeling	of	time	series	data.

Convolutional	Networks	are	used	in
imaging	applications.

Input	is	pixel	data.

Parameters	are	shared	across
nearby	parts	of	the	image.

Parameter	Sharing

Recurrent	Networks	are	used	in
sequence	modeling	applications.

For	instance,	time	series	and
forecasting.

Parameters	are	shared	across	a
time	lag.

Recurrent	Networks

Recurrent	Networks
The	long	short-term	memory
(LSTM)	model	is	very	popular	in
time	series	analysis

Summary
Deep	Learning	is	riding	a	big	wave	of	popularity.

State-of-the-art	results	in	many	applications.

Best	results	in	applications	with	massive	amounts	of	data.

However,	newer	methods	allow	use	in	other	situations.

Summary
Many	of	recent	advances	stem	from	computational	and	technical
approaches	to	modeling.

Keeping	track	of	these	advances	is	hard,	and	many	of	them	are	ad-hoc.

Not	straightforward	to	determine	a-priori	how	these	technical	advances
may	help	in	a	specific	application.

Require	significant	amount	of	experimentation.

Summary
The	interpretation	of	hidden	units	as	representations	can	lead	to	insight.

There	is	current	research	on	interpreting	these	to	support	some	notion	of
statistical	inference.

Excellent	textbook:	http://deeplearningbook.org

http://deeplearningbook.org/

