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Unsupervised Learning

So far we have seen "Supervised Methods" where our goal is to analyze
a response (or outcome) based on various predictors.

In many cases, especially for Exploratory Data Analysis, we want
methods to extract patterns on variables without analyzing a specific
response.

Methods for the latter case are called "Unsupervised Methods".
Examples are Principal Component Analysis and Clustering.
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Unsupervised Learning

Interpretation of these methods is much more subjective than in
Supervised Learning.

For example: if we want to know if a given predictor is related to
response, we can perform statistical inference using hypothesis testing.
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Unsupervised Learning

If we want to know which predictors are useful for prediction: use cross-
validation to do model selection.

Finally, if we want to see how well we can predict a specific response, we
can use cross-validation to report on test error.
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Unsupervised Learning

In unsupervised methods, there is no similar clean evaluation
methodology.

Nonetheless, they can be very useful methods to understand data at
hand.
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Motivating Example

Time series dataset of mortgage affordability as calculated and
distributed by Zillow: https://www.zillow.com/research/data/.

The dataset consists of monthly mortgage affordability values for 76
counties with data from 1979 to 2017.
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https://www.zillow.com/research/data/

Motivating Example

"To calculate mortgage affordability, we first calculate the
mortgage payment for the median-valued home in a
metropolitan area by using the metro-level Zillow Home Value
Index for a given quarter and the 30-year fixed mortgage
Interest rate during that time period, provided by the Freddie
Mac Primary Mortgage Market Survey (based on a 20 percent
down payment)."
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Motivating Example

"Then, we consider what portion of the monthly median
household income (U.S. Census) goes toward this monthly

mortgage payment. Median household income is available with
alag."
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Motivating Example

Can we partition counties
County-Level Mortgage Affordability over Time _ ] ]
Into groups of counties with

similar value trends across
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Preliminaries

In "Supervised Learning" we were concerned with estimates that
minimize some error function relative to the outcome of interest v:

pu(z) = arg min EyixL(Y,0)
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Preliminaries

In order to do this, explicitly or not, the methods we were using would be
concerned with properties of the conditional probability distribution prv|x),

without concerning itself with probability distribution rrx) of the
covariates themselves.
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Preliminaries
In unsupervised learning, we are interested in properties of rr(x).

In our example, what can we say about the distribution of home value
time series?

Since the dimensionality of rrx) can be large, unsupervised learning
methods seek to find structured representations of r-(x) that would be
possible to estimate.
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Preliminaries

In clustering we assume that predictor space is partitioned and that rr(x)
Is defined over those partitions.

In dimensionality reduction we assume that rrx) is really defined over a
space (manifold) of smaller dimension. We will start studying clustering

first.
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Cluster Analysis

The high-level goal of cluster analysis is to organize objects
(observations) that are similar to each other into groups.

We want objects within a group to be more similarto each other than
objects in different groups.
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Cluster Analysis

The high-level goal of cluster analysis is to organize objects
(observations) that are similar to each other into groups.

We want objects within a group to be more similarto each other than
objects in different groups.

Central to this high-level goal is how to measure the degree of similarity
between objects.

A clustering method then uses the similarity measure provided to it to
group objects into clusters.
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Cluster Analysis

Result of the k-means algorithm
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Dissimilarity-based Clustering

For certain algorithms, instead of similarity we work with dissimilarity,
often represented as distances.

When we have observations defined over attributes, or predictors, we
define dissimilarity based on these attributes.
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Dissimilarity-based Clustering

Given measurements o, for i =1,..., v observations over j=1,...,p predictors.

Suppose we define a dissimilarity 4z, =), We can then define a
dissimilarity between objects as

P
d(zi, zy) = Z dj(zij, Tirj)
=1

J
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Dissimilarity-based Clustering

In the k-means algorithm, and many other algorithms, the most common
usage is squared distance

dj(@ij, Toj) = (zij — zir7)°

We can use different dissimilarities, for example

dj(zij, zij) = |Tij — Tj|

which may affect our choice of clustering algorithm later on.
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Dissimilarity-based Clustering

For categorical variables, we could set

0 if Lij = Lj'j
dj(zij, 2ij) =

1o.w.
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Dissimilarity-based Clustering
If the values the categorical variable have an intrinsic similarity

Generalize using symmetric matrix r with elements

L’I“T‘/ — Lr’?“!
L. =0 and
L. >0 otherwise.

This may of course lead to a dissimilarity that is not a proper distance.
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K-means Clustering

A commonly used algorithm to perform clustering is the K-means
algorithm.

It is appropriate when using squared Euclidean distance as the measure
of object dissimilarity.
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K-means Clustering

K-means partitions observations into x clusters, with x provided as a
parameter.

Given some clustering, or partition, ¢, denote cluster assignment of
observation ; to cluster < {1,...,k} IS denoted as c() = .
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K-means Clustering

K-means partitions observations into x clusters, with x provided as a
parameter.

Given some clustering, or partition, ¢, denote cluster assignment of
observation ; to cluster < {1,...,k} IS denoted as c() = .

K-means minimizes this clustering criterion:

K
WO =53 Y Y el
k=1 i:

14:C(i)=k i C(i)=k
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K-means Clustering

This is equivalent to minimizing

with:

® Zp = (ZTgy-- -, Tkp)

e z,, IS the average of predictor ; over the observations assigned to
cluster «,

e n, IS the number of observations assigned to cluster «
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K-means Clustering

Minimize the total distance given by each observation to the mean
(centroid) of the cluster to which the observation is assigned.
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K-means Clustering
An iterative algorithm is used to minimize this criterion

1. Initialize by choosing x observations as centroids m;,m,,...,m

2. Assign each observation ; to the cluster with the nearest centroid, I.e.,
Set ¢(i) = argmin; <k ||z; — ma?

3. Update centroids m; = z

4. Iterate steps 1 and 2 until convergence
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K-means Clustering

Here we illustrate the ] M A
k-means algorithm 0-2'/\\-v\~ Mo, "

over four iterations on 8: :
our example data
with & = 4.
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K-means Clustering

Criterion w(c) is reduced in each iteration so the algorithm is assured to
converge.

Not a convex criterion, the clustering we obtain may not be globally
optimal.

In practice, the algorithm is run with multiple initializations (step 0) and
the best clustering achieved is used.
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K-means Clustering

Also, selection of observations as centroids can be improved using the
K-means++ algorithm:

1. Choose an observation as centroid =, uniformly at random

2. To choose centroid =,, compute for each observation : not chosen as
a centroid the distance to the nearest centroid ¢; = mini-is |z; — m?

3. Set centroid =, to an observation randomly chosen with probability

d
€;

Zi’ e‘ii,

4. Iterate steps 1 and 2 until x centroids are chosen
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Choosing the number of clusters

The number of parameters must be determined before running the K-
means algorithm.

There is no clean direct method for choosing the number of clusters to
use in the K-means algorithm (e.g. no cross-validation method)
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Choosing the number of clusters

3.00 1

Looking at criterion
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Choosing the number of clusters
We can use properties of this plot for ad-hoc selection.
Suppose there is a true underlying number &+ of clusters in the data,

e improvement in the wx(c) statistic will be fast for values of x < k-
e slower for values of x > &-.
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Choosing the number of clusters
Improvement in the wy(c) statistic will be fast for values of k < k-

In this case, there will be a cluster which will contain observations
belonging to two of the true underlying clusters, and therefore will have
poor within cluster similarity.

As k IS increased, observations may then be separated into separate
clusters, providing a sharp improvement in the wy(c) statistic.
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Choosing the number of clusters
Improvement in the wy(c) statistic will be slower for values of k > k-

In this case, observations belonging to a single true cluster are split into
multiple cluster, all with generally high within-cluster similarity,

Splitting these clusters further will not improve the wy(c) statistic very
sharply.
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Choosing the number of clusters
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Choosing the number of clusters
The gap statistic is used to identify the inflection point in the curve.

It compares the behavior of the wy(c) statistic based on the data with the
behavior of the wy(c) statistic for data generated uniformly at random over
the range of the data.

Chooses the x that maximizes the gap between these two wx(c) curves.
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Choosing the number of clusters

Optimal number of clusters

For this dataset, the
gap statistic suggests
there is no clear
cluster structure and
therefore x =1 1s the
best choice.

0.51

0.41

Gap statistic (k)

A choice of k=4 1s 0.3
also appropriate.

1 2 3 4 5 6 7 8 9
Number of clusters k
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Soft K-means Clustering

Instead of the combinatorial approach of the k-means algorithm, take a
more direct probabilistic approach to modeling distribution rr(x).

Assume each of the & clusters corresponds to a multivariate distribution

PT‘k(X),

pr(x) IS given by mixture of these distributions as pr(x) = &5 | n.Pri(X).
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Soft K-means Clustering
Specifically, take rr,(x) as a multivariate normal distribution #.(x) = N(u, o21)

and mixture density f(x) =5 n.f:(X).
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Soft K-means Clustering

Use Maximum Likelihood to estimate parameters

based on their log-likelihood

£(6; X) =) log [Z 7. fr(2i; 9)]
=1 k=1
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Soft K-means Clustering
£0; X) = f: log Lf: kak(ffi;@)]

Maximizing this likelihood directly is computationally difficult

Use Expectation Maximization algorithm (EM) instead.
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Soft K-means Clustering
Consider unobserved latent variables a, taking values 0 or 1,

A,; =1 Specifies observation =; was generated by component « of the
mixture distribution.

42 | 54



Soft K-means Clustering

Now set pra,, =1) = n,,and assume we observed values for indicator
variables a,,.

We can write the log-likelinood of our parameters in this case as

N K

N K
0(0; X, A) ZZAiklogfk(mi;e) +ZZAik10gﬂ'k

i=1 k=1 i=1 k=1
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Soft K-means Clustering

Maximum likelihood estimates:
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Soft K-means Clustering

Of course, this result depends on observing values for a,, which we don't
observe. Use an iterative approach as well:

e given current estimate of parameters o,
e maximize

E(ty(¢; X, A)|X, 0)
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Soft K-means Clustering

Of course, this result depends on observing values for a,, which we don't
observe. Use an iterative approach as well:

e given current estimate of parameters o,
e maximize

E(ty(¢; X, A)|X, 0)

We can prove that maximizing this quantity also maximizes the likelihood
we need ¢@s; x).
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Soft K-means Clustering
In the mixture case, what is the function we would maximize?

Define
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Soft K-means Clustering

Use Bayes' Rule to write this in terms of the multivariate normal densities
with respect to current estimates o:

Fi(s; pr, 03)mh

T K
Sy fils; i, 0)m

Yik =
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Soft K-means Clustering

Quantity (0 Is referred to as the responsibility of cluster » for observation
i, according to current parameter estimate .
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Soft K-means Clustering

Then the expectation we are maximizing is given by

E(6(0'; X, A)|X, 0) ZZ%k ) log fi(z:6) +ZZ%1¢(9)10€7T;€
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Soft K-means Clustering

We can now give a complete specification of the EM algorithm for
mixture model clustering.

1. Take initial guesses for parameters ¢

2. Expectation Step. Compute responsibilities v,

3. Maximization Step. Estimate new parameters based on
responsibilities as below.

4. Iterate steps 1 and 2 until convergence
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Soft K-means Algorithm

Estimates in the Maximization step are given by

N
> im1 Yik(0)x
Zf\il Yik

My =

> i =1y (0) (s — )
Zfil Y (6)

67 =

and
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Soft K-means Algorithm

The name "soft" K-means refers to the fact that parameter estimates for
each cluster are obtained by weighted averages across all observations.
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Summary

Clustering methods are intuitive methods useful to understand structure
within unlabeled observations.

Model-based methods, using the EM algorithm, provide a large amount
of flexibililty over simpler methods like the K-means algorithm.

Kernel-based clustering methods (Kernel K-means) permit the clustering
of observations based on non-linear similarity functions.
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