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Many Cars Tone Deaf To Women's Voices
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Women have a tougher time using voice-command systems |...
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http://www.autoblog.com/2011/05/31/women-voice-command-systems/
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There's software used across the country to predict future criminals. And it's biased

against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

Prediction Fails Differently for Black Defendants

WHITE AFRICAN AMERICAN

Labeled Higher Risk, But Didn't Re-Offend 44.9%

Labeled Lower Risk, Yet Did Re-Offend

Overall, Northpointe's assessment tool correctly predicts recidivism 61 percent of the time. But blacks are almost twice as likely
as whites to be labeled a higher risk but not actually re-offend. It makes the opposite mistake among whites: They are much

more likely than blacks to be labeled lower risk but go on to commit other crimes.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing




Precision Medicine

Precision Medicine Can Involve:
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Precision Medicine

*Inherently a prediction problem

* From genotype to risk

* From genotype to therapeutic response



DNA Sequence Variation in a Gene Can Change
the Protein Produced by the Genetic Code
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Health or Disease?

DNA Sequence
Person 1 AAATTT  Normal protein

s
_ - J0me
7 DNA

variations

Person2 AATTTT o

effects
Low or

nonfunctioning protein

Person 3 AACTTT (\A—,\ Other

variations

lead to

disease (e.g., sickle cell)

or increased susceptibility
to disease (e.g., lung cancer)




Personal Genomics

Search 23andMe Go login claimcodes blog healp  yourcar
23andMe genetics just got personal.

now it works

genetcs 101 about us

illumina:

Every Genome Tells a Story.
What’s yours?



Approaches

Mechanistic
models
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Approaches

*Observational association modeling
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-rom association study to risk prediction
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Family
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Family Screening

Other Clinical Scenarios for Genetic Testing
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How can this lead to health disparities”

TNNT2 (K247R)
43%
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SPECIAL ARTICLE

Genetic Misdiagnoses and the Potential for Health Disparities
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Approaches

*Observational association modeling
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How can this lead to health disparities”
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Recall: Formal Definition of Binary
Classification (from CIML)

Given:

1. An input space X

Compute: A function f minimizing:

TASK: BINARY CLASSIFICATION

2. An unknown distribution D over Xx{—1,+1}

= (x,y)~D [f(x) = y}

———



Train/Test Mismatch

* When working with real world data, training
sample
— reflects human biases

— is influenced by practical concerns
* e.g., what kind of data is easy to obtain

 Train/test distribution mismatch is frequent issue

— aka covariate shift, sample selection bias, domain
adaptation



Typical Design Process
for an ML Application
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31as IS pervasive

— Bias in the labeling

— Sample selection bias

— Bias in choice of labels

— Bias in features or model structure

— Bias in loss function

— Deployed systems create feedback loops



Data collection

- What data should (not) be collected

- Who owns the data

- Whose data can (not) be shared

- What technology for collecting, storing, managing data
- Whose data can (not) be traded

- What data can (not) be merged

- What to do with prejudicial data

[Fung, 2010]
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Data Modeling

- Data is biased (known/unknown)
* Invalid assumptions
» Confirmation bias

* Publication bias

- Badly handling missing values

[Fung, 2010]
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Deployment

« Spurious correlation / over-generalization

 Using “black-box” methods that cannot be explained
 Using heuristics that are not well understood
 Releasing untested code

 Extrapolating

- Not measuring lifecycle performance (concept drift in ML)

[Fung, 2010]
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ACM Code of Ethics

“To minimize the possibility of indirectly harming others,
computing professionals must minimize malfunctions by
following generally accepted standards for system design
and testing. Furthermore, it is often necessary to assess the
social consequences of systems to project the likelihood of
any serious harm to others. If system features are
misrepresented to users, coworkers, or supervisors, the

individual computing professional is responsible for any
resulting injury.”

https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct



Data Science guiding principles

- Start with clear user need and public benefit

- Use data and tools which have minimum intrusion necessary
 Create robust data science models

- Be alert to public perceptions

- Be as open and accountable as possible

- Keep data secure

[UK cabinet office]
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Domain Adaptation

« What does it mean for 2 distributions to be related?

* When 2 distributions are related how can we build
models that effectively share information between them?



Unsupervised adaptation

* Goal: learn a classifier f that achieves low
expected loss under new distribution D%

* Given labeled training data from old distribution
DOld (xl,yl) ..... (xN,yN)

* And unlabeled examples from new distribution
DWWz, ..., 2ZMm



Relation between test loss in new
domain and old domain

test loss

= E (3, y)~prew [£ (y f(x))]

= ZD“QW )y, f(x))

definition

expand expectation

times one

rearrange

definition

(8.6)



How can we estimate the ratio
between Dnew and Dold?

Fixed base S = selection
distribution variable

D"V(x,y)  zmew D" (x,y)p(s=0 | x)
Dold(x ) ~ _1_pbase X, s=11x«
Y Zold (x,y)p( | x)

definition (8.9)

— Z“}W 5 ((SS j f ::)) cancel base (8.10)
Zold -

= Zig z (1) 3 consolidate (8.11)
Z1 ;(Z(ij \1x‘)X) binary selection (8.12)

=7 ! rearrange (8.13)

We can estimate P(s=1|x)

using a binary classifier!



Algorithm 23 SELECTIONADAPTATION({ (X, Yn)) N1, (zZm) |, A)

c DYt ((xy, +1))2}:1 U ((zm, —1))%:1 // assemble data for distinguishing
// between old and new distributions

. P ¢ train logistic regression on Dt
. N
. Dweighted , <(xn,yn, ﬁ — 1)>n_1 // assemble weight classification
// data using selector

+ return A(Dweighted) // train classifier




Supervised adaptation

« Goal: learn a classifier f that achieves low
expected loss under new distribution D"

* Given labeled training data from old distribution
pold < (old) ;yn0|d >N

* And labeled examples from new distribution

Dnew < new ;yngew >$1/[:1



One solution: feature
augmentation

* Map inputs to a new augmented representation

shared  old-only new-only
0% H< 0y o) . 0,0,...,0 >
| S
D-many
(new) (new) (new)
X, H< X, , 0,0,...,0 , xy, >
\H/—/



One solution: feature
augmentation

 Transform Dold and Dnew training
examples

 Train a classifier on new representations
* Donel



One solution: feature
augmentation

» Adding instance weighting might be useful
ifN>> M

« Most effective when distributions are “not
too close but not too far”

— In practice, always try “old only”, “new only”,
“union of old and new" as well!



Theorem 9 (Unsupervised Adaptation Bound). Given a fixed rep-
resentation and a fixed hypothesis space F, let f € F and let e®®V =
minse x5 [V (f*) + e (f*)], then, for all f € F:

e(new) (f) < €(old) (f) 4+ e(best) 4+ dA (Dold’ Dnew) (8.27)
error on Dhew error on Dol minimal avg error distance



