
Where	in	a	Genome	Does	DNA	Replication	Begin?
Algorithmic	Warm-Up

Phillip	Compeau and	Pavel	Pevzner
Bioinformatics	Algorithms:	an	Active	Learning	Approach

©2013		by	Compeau	and	Pevzner.	All	rights	reserved	

Before	a	Cell	Divides,	it	Must	Replicate	its	Genome

Replication	begins	in	a	region	called	
the	replication	origin (oriC)	

Where	in	a	genome	does	it	all	begin?

Finding	Origin	of	Replication

OK	– let’s	cut	out	this	DNA	fragment.	
Can	the	genome	replicate	without	it?

This	is	not	a	
computational	

problem!

Finding	oriC Problem: Finding	oriC in	a	genome.
• Input.	A	genome.
• Output.	The	location	of	oriC in	the	genome.

How	Does	the	Cell	Know	to	Begin	Replication	
in	Short	oriC?

Replication	origin	of	Vibrio	cholerae (≈500	nucleotides):

There	must	be	a	hidden	message	telling	the	cell	to	start	replication	here.

atcaatgatcaacgtaagcttctaagcatgatcaaggtgctcacacagtttatccacaac
ctgagtggatgacatcaagataggtcgttgtatctccttcctctcgtactctcatgacca
cggaaagatgatcaagagaggatgatttcttggccatatcgcaatgaatacttgtgactt
gtgcttccaattgacatcttcagcgccatattgcgctggccaaggtgacggagcgggatt
acgaaagcatgatcatggctgttgttctgtttatcttgttttgactgagacttgttagga
tagacggtttttcatcactgactagccaaagccttactctgcctgacatcgaccgtaaat
tgataatgaatttacatgcttccgcgacgatttacctcttgatcatcgatccgattgaag
atcttcaattgttaattctcttgcctcgactcatagccatgatgagctcttgatcatgtt
tccttaaccctctattttttacggaagaatgatcaagctgctgctcttgatcatcgtttc

The	Hidden	Message	Problem

The	notion	of	“hidden	message”	is	not	
precisely	defined.	

Hidden	Message	Problem.	Finding	a	hidden	message	in	
a	string.
• Input.	A	string	Text (representing	replication	origin).	
• Output.	A	hidden	message	in	Text.

This	is	not	a	
computational	
problem	either!

The	Hidden	Message	Problem	Revisited	

The	notion	of	“hidden	message”	is	not	
precisely	defined.	

Hint:	For	various	biological	signals,	certain	words		
appear	surprisingly	frequently	in	small	regions	of	
the	genome.	

AATTT	is	a	surprisingly	frequent	5-mer	in:	

ACAAATTTGCATAATTTCGGGAAATTTCCT

This	is	not	a	
computational	
problem	either!

Hidden	Message	Problem.	Finding	a	hidden	message	in	
a	string.
• Input.	A	string	Text (representing	oriC).	
• Output.	A	hidden	message	in	Text.

The	Frequent	Words	Problem

This	is	better,	but	where	is	
the	definition	of	“a	most	

frequent	k-mer?”	

Frequent	Words	Problem.		Finding	most	frequent	k-mers in	a	string.
• Input.		A	string	Text and	an	integer	k.
• Output.		All	most	frequent	k-mers in	Text.	

The	Frequent	Words	Problem

A	k-mer Pattern is	a	most	frequent	k-mer in	a	
text	if	no	other	k-mer is	more	frequent	than	
Pattern.	

AATTT is	a	most	frequent	5-mer	in:				

ACAAATTTGCATAATTTCGGGAAATTTCCT

Son	Pham,	Ph.D.,	kindly	gave	us		
permission	to	use	his	photographs	and	
greatly	helped	with	preparing	this	
presentation.	Thank	you	Son!

Frequent	Words	Problem.		Finding	most	frequent	k-mers in	a	string.
• Input.		A	string	Text and	an	integer	k.
• Output.		All	most	frequent	k-mers in	Text.	

Does	the	Frequent	Words	Problem	Make	
Sense	to	Biologists?	

Frequent	Words	Problem.		Finding	most	frequent	k-mers in	a	string.
• Input.		A	string	Text and	an	integer	k.
• Output.		All	most	frequent	k-mers in	Text.	

Replication	is	performed	by	DNA	polymerase and	the	initiation	of	
replication	is	mediated	by	a	protein	called	DnaA.

DnaA binds	to	short	(typically	9	nucleotides	long)	segments	within	
the	replication	origin	known	as	a	DnaA box.	

A	DnaA box	is	a	hidden	message	telling	DnaA:	“bind	here!”	And	
DnaA wants	to	see	multiple	DnaA boxes.	

What	is	the	simplest	way	to	get	most	frequent	
k-mers?

FREQUENTWORDS	(Text,	k)
FrequentPatterns <- an	empty	set
for	i <-0		to	|Text|	- k

Pattern	<- the	k-mer (i,	k)
COUNT(i)<- PATTERNCOUNT(Text,	Pattern)

maxCount <- maximum	value	in	array	COUNT
for	i <-0		to	|Text|	- k

if	COUNT(i)	=	maxCount
add	Text(i,	k)	to	FrequentPatterns

remove	duplicates	from	FrequentPatterns

PATTERNCOUNT(Text,	Pattern)
count	<- 0
for	i <-0		to	|Text|	- |Pattern|

if	Text(i,|	Pattern|)	=	Pattern
count<- count	+	1

return	count

What	is	the	problem	with	the	previous	algorithm	?

Human	Genome	is	about	3	billion	base	pairs
O(|text|2 .	k)	will	take	forever!

How	can	we	make	FREQUENTWORDS	faster?	

What	are	the	possible	k-mers of	length	k	=	3	in	
Alphabet	A,	T,	C,	G?

AAA
AAT
AAC
AAG
ATA
ATT
ATC
ATG
ACA
ACT
ACC
ACG
AGA
AGT
AGC
AGG…..

Number of possible combinations at
k=3
43 = 64

Generally Number of possible
combinations is 4k

FASTERFREQUENTWORDS	(Text,	k)
FrequentPatterns <- an	empty	set
FREQUENCYARRAY	<- COMPUTINGFREQENCIES	(Text,	k)
maxCount <- maximum	value	in	array	FREQUENCYARRAY	
for	i <-0		to	4k	-1

if	FREQUENCYARRAY	(i)	=	maxCount
Pattern	<– NumberToPattern (i,	k)
add	Pattern	to	FrequentPatterns

remove	duplicates	from	FrequentPatterns

COMPUTINGFREQENCIES	(Text,	k)
for	i <-0		to	4k	-1

FREQUENCYARRAY	(i)	<- 0
for	i <-0		to	|Text|	- k

Pattern	<- Text(i,	k)
j	<- PatternToNumber(Pattern)
FREQUENCYARRAY	(j)	<- FREQUENCYARRAY	(j)	+	1

return	FREQUENCYARRAY	

Another	idea!

Sort	all	k-mers and	then	count	there	frequency.

Will	this	improve	complexity?

FINDINGFREQUENTWORDSBYSORTING	(Text,	k)
FrequentPatterns <- an	empty	set
for	i <-0		to	|Text|	- k

Pattern	<- Text(i,	k)
INDEX(i)	<-PatternToNumber(Pattern)
COUNT(i)	<- 1

SORTEDINDEX	<- SORT(INDEX)
for	i <-1		to	|Text|	- k

if	SORTEDINDEX	(i)		=	SORTEDINDEX	(i-1)
COUNT	(i)	=	COUNT	(i-1)	+	1	

maxCount <- maximum	value	in	array	COUNT
for	i <-1		to	|Text|	- k

if	COUNT	(i)	=	maxCount
Pattern	<– NumberToPattern (SORTEDINDEX	(i),	k)
add	Pattern	to	FrequentPatterns

remove	duplicates	from	FrequentPatterns

How	do	we	know	that	the	frequencies	are	
meaningful	and	not	random?

Probabilities!

What	is	the	probability	of	generating	a	
palindromic	(e.g.,	ATCGAAGCTA)	?

What	is	the	probability	that	k-mer k=2	appears	at	
least	once	in	a binary string	of	length	4?

Probability	is		!!
!"

Say	we	want	probability	of	01

0000	0001 0010	0011	0100	0101 0110	0111
1000	1001 1010	1011	1100	1101 1110	1111

We	made	an	assumption	that	text	is	not	
overlapping	what	if	the	pattern	is	AAAAAAAA?

What	is	the	probability	that	k-mer k=2	appears	at	
least	once	in	a binary string	of	length	4?

Probability	is		 #
!"

Say	we	want	probability	of	11

0000	0001	0010	0011 0100	0101	0110	0111
1000	1001	1010	1011 1100	1101	1110	1111

What	is	the	probability	that	some k-mer
appears	t	times	in	a	text?
Lets	define	some	variables:

• Pr	(𝑁, 𝐴, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛, 𝑡):	Probability	that	k-mer 𝑃𝑎𝑡𝑡𝑒𝑟𝑛	appears	𝑡 times	in	a	
text	with	length	𝑁 and	alphabet	𝐴.

• Let	𝑛	be	number	of	ways	to	intersect	𝑡 instances	of	k-mer 𝑃𝑎𝑡𝑡𝑒𝑟𝑛	into	a	
fixed	text	of	length	𝑁

𝑛 = 	𝑁	– 	𝑡. 𝑘

• So	we	have	𝑛 + 𝑡 options	in	which	we	select	𝑡 for	the	placement	of	
𝑃𝑎𝑡𝑡𝑒𝑟𝑛	giving	total	 𝑛 + 𝑡𝑡

What	is	the	probability	that	some k-mer
appears	t	times	in	a	text?	cont ..

• We	then	multiply	 𝑛 + 𝑡𝑡 by	the	number	of	strings	of	length	𝑛	in	which	we	

can	insert	𝑡 instances	of		𝑃𝑎𝑡𝑡𝑒𝑟𝑛	to	have	approximate	total	of 𝑛 + 𝑡
𝑡 	𝐴8

• To	get	the	probability	we	divide	by	the	number	of	strings	of	length	𝑁

Pr 𝑁, 𝐴, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛, 𝑡 ≈ 	
𝑛 + 𝑡
𝑡 	𝐴8

𝐴:

What	is	the	probability	of	generating	a	palindromic	
(e.g.,	ATCGAAGCTA)	in	a	DNA	of	length	1000	once?

Pr 1000, 4, 𝐴𝑇𝐶𝐺𝐴𝐴𝐺𝐶𝑇𝐴, 1

What	if	the	DNA	has	length	1×10" ?

Pr 1×10", 4, 𝐴𝑇𝐶𝐺𝐴𝐴𝐺𝐶𝑇𝐴, 1

What	is	the	probability	that	any k-mer of	
length	k	appears	at	least t	times	in	a	text?

• Let	𝑝	=	Pr 𝑁, 𝐴, 𝑃𝑎𝑡𝑡𝑒𝑟𝑛, 𝑡 ≈ 	
8CD
D 	EF

EG

• The	approximate	probability	that	a	pattern	doesn’t	appear	𝑡 or	more	times	is	1 − 𝑝

• The	probability	that	all	patterns	of	length	𝑘	appear	fewer then	𝑡	times	in	a	random	
string	is	(1 − 𝑝)EI

• The		probability	that	there	exists	a	k-mer appearing	𝑡 or	more	times	is	
1	 −	(1 − 𝑝)EI

• To	simplify	the	above	equation	lets	assume	𝑝	is	the	same	for	any	pattern	so	now	

Pr 𝑁, 𝐴, 𝑘	𝑡 	≈ 𝑝. 𝐴J 	≈
8CD
D 	EF

EG
	 . 𝐴J

