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Why	are	my	children		
		such	pigs?



What	is	Genomics?
• Each	cell	contains	a	complete	copy	of	an	organism’s	
genome,	or	blueprint	for	all	cellular	structures	and	
ac;vi;es.	

• The	genome	is	distributed	along	chromosomes,	which	
are	made	of	compressed	and	entwined	DNA.	

• Cells	are	of	many	different	types	(e.g.	blood,	skin,	nerve	
cells),	but	all	can	be	traced	back	to	a	single	cell,	the	
fer;lized	egg.



Hector Corrada Bravo

What is Genomics?

• Study the molecular basis of 
variation in development and 
disease

• Using high-throughput 
experimental methods

• algorithms

• ML

• data management

• modeling
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Measurement

• For	a	small	enough	piece,	we	can	measure	the	
sequence	of	bases,	referred	to	as	sequencing	

• Human	Genome	Project



Genome
TCAGTTGGAGCTGCTCCCCCACGGCCTCTCCTCACATTCCACGTCCTGTAGCTCTATGACCTCCACCTTTGAGTCCCTCCTCTCACACCTGAC
ATGAAAAGGCACATGAGGATCCTCAAATACCCCGTGATCAGTCTCAGGGTAGCTCTCATAGCCTGGACAGGGCCCCCCTCGGGGGTTGCGCCC
AGGTCCAGGCGGGGGATGCACAGCAACAGTCACCGAAGCAGAAGCCGTCACAGTGGTGATGGGCTGGCAGTAGCTGGGCACAGAGCTGCCCAT
GGCGGTGGACGTTGGGTTCCGAGGGTTGTGAGAACGGGCCCCACGGGGCCCTGAGCGGTCCCTATTGCTAGGGCCAGAATGCCCTTCAGTAGA
AATTTCAAAAGCGTCTCTGCGCGGTCTGTAGGGGGGTGGCCGCAAGCCTTCTCTAGGGGGATCCCTTCGAGGCTGCTGGCCTTGCCGTCCAGG
GGACAAGGAGCCAGAGTCCAGGTGGGGCTGTTGCCGAGGGGTCAAGGGAGGCTGATGTCTGGAGTCCGGATGGACCACCTGCAGAGGAGAGAC
ATAGGTCAACACAGGGAGGTAGGATGGTGGTGATGTTCCACCCACAAAAGAAAACCTATTCCTTTAGAAACCTCCAGGATGTGAATCCTGCCT
GCACCTGCACAGCTGGCTGGAGGCATATAGCCACTGCCCATAGATCTCAACTTACCCTCACAACCAACTGCCCCCAGGCCTAAGTTCTCTGCC
TCAAAACTGCCAAGGCCTGGATAGCCAAGAGCCTGGGTGTCTTGGAAATATGCAACCATAAATAGTAGCTTTTAGAAGTATAAGGCTCCTGTT
TCTGGGTCATATTAGTGTTGTTTTCACCTGTCCCCAGCCCTAAGCCAGGTGTGGCCAGAAGCAAATGTACTGTAAGAGCAGAGCAAAAACTTC
CACACAGATAGTTCTGTTAGGCAATACATCTCTGCCTGACTATTAGGAATCTGGTTTCTGGGTCCTCTGTACAAAGCTCGGAGCAACACAGTG
GCCACATCAATCAAAAGGACCGTGACCAACTTCAAAGTCGGTGAGCTTGTACCTATTTTTAGGCTCCTGCTGAACAGAACCAGATTCACACTA
CAGCTCAGCAGGGCATCGTCACGGGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTGGGGGGGGGGGGTGGACAGAGGACGGGGAC
ACAATTCACTGGCCAGCCCTTCTCTCCTTCAAGGAAGGCTGCTCTAGCCTGGGACTGGAATACACATTTCCTGTAAACATGGTGGGGGCCTCA
GGCAAGCCAGAGTTTTGGAGCCTTCCTTAACTCTTCAAGGTGAGCATCTTGACTTGGAGGGTGGGGGTGCGGGTAAGGAAGGAACCTGTGGAC
TCCTCCCTACAAGACAGAAAAGGAATAAGCCACGAAGACAATAACGATTTTTGTATCAAGCGTCCTCTCCCATTTCAGCTTACCTGACAATGA
AATCAAATTCGGACCCTGCAAGCATCAGTACACCCAGCAGAGTGGACACAGCACCGTCCAGAACGGGAGCAAACATGTGCTCCAGAGCGAGCA
TAGCCCTGTGGTTCTTGTCCCCAATGGCTGTCAGAAAGGCCTGAACAAAGGAGAAAATTGACACGGTCACATTCTGGGTGTGGTAAAGTGCTC
AGCTGTGTCTATACTTGGGTTTTGTAT…

Total	amount	of	DNA	in	human	genome:	
3	*	109	base	pairs	(bp)



Why	are	these	two	different?  

Differences	explained	by	1-10%	difference	in	genome

Similari;es	explained	by	similar	genes



Genes

Gene Gene Gene Gene Gene



Computa;onal	Biology

genomics transcriptomics proteomics

Genes	encode	proteins	which	are	transcribed	into	mRNA	and	translated	into	proteins.

Major	technological	advances	allow	unprecedented	data	
acquisi;on
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build a whole human genome sequencing device and use it to sequence 100 human genomes within 
30 days or less, with an accuracy of no more than one error in every 1,000,000 bases sequenced, with 
an accuracy rate of at least 98% of the genome, and at a recurring cost of no more than $1,000 (US) 
per genome.
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“genome sequencing technology is plummeting in cost and increasing in speed independent of our 
competition”

“companies can do this for less than $5,000 per genome, in a few days or less — and 

are moving quickly towards the goals we set for the prize.”



What	makes	them	different?

Much	human	varia;on	is	due	to	difference	in	~	6	million	base	pairs	(0.1	
%	of	genome)	referred	to	as	SNPs



TACATAGCCATCGGTANGTACTCAATGATGATAGenomic	DNA: A SNP

G

Single	Nucleo;de	Polymorphism	(SNP)	



From reads to evidence



From reads to evidence
1. Comparative

Sequence-wise, individuals of a species are nearly identical

Well curated, annotated “reference” genomes exist

D. melanogaster, Science, 2000 H. sapiens, Nature, 2000 M. musculus, Nature, 2002
and Science, 2000

Idea: “Map” reads to their point of 
origin with respect to a reference, 
then study differences



From reads to evidence
2. de novo

Assume nothing! - let reads tell us everything

Reads with overlapping 
sequence probably originate 
from overlapping portions 
of the subject genome

Encode overlap 
relationships as a 
graph

The full genome sequence 
is a “tour” of the graph

Source: De Novo Assembly Using Illumina Reads. Illumina. 2010 

Source: De Novo Assembly Using Illumina Reads. Illumina. 2010 
http://www.illumina.com/Documents/products/technotes/technote_denovo_assembly.pdf

http://www.illumina.com/Documents/products/technotes/technote_denovo_assembly.pdf


How	many	basepair	differences?
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Computa;onal	Biology

genomics transcriptomics proteomics

Genes	encode	proteins	which	are	transcribed	into	mRNA	and	translated	into	proteins.

Major	technological	advances	allow	unprecedented	data	
acquisi;on



Measurements
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MLL translocations specify a distinct gene
expression profile that distinguishes a
unique leukemia
Scott A. Armstrong1–4, Jane E. Staunton5, Lewis B. Silverman1,3,4, Rob Pieters6, Monique L. den Boer6, Mark
D. Minden7, Stephen E. Sallan1,3,4, Eric S. Lander5, Todd R. Golub1,3,4,5* & Stanley J. Korsmeyer2,4,8*
*These authors contributed equally to this work.

Published online: 3 December 2001, DOI: 10.1038/ng765

Acute lymphoblastic leukemias carrying a chromosomal translocation involving the mixed-lineage leukemia gene
(MLL, ALL1, HRX) have a particularly poor prognosis. Here we show that they have a characteristic, highly distinct
gene expression profile that is consistent with an early hematopoietic progenitor expressing select multilineage
markers and individual HOX genes. Clustering algorithms reveal that lymphoblastic leukemias with MLL transloca-
tions can clearly be separated from conventional acute lymphoblastic and acute myelogenous leukemias. We 
propose that they constitute a distinct disease, denoted here as MLL, and show that the differences in gene
expression are robust enough to classify leukemias correctly as MLL, acute lymphoblastic leukemia or acute 
myelogenous leukemia. Establishing that MLL is a unique entity is critical, as it mandates the examination of
selectively expressed genes for urgently needed molecular targets.

1Departments of Pediatric Oncology, 2Cancer Immunology and AIDS and 8Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston,
Massachusetts, USA. 3Division of Pediatric Hematology/Oncology, Children’s Hospital, Boston, Massachusetts, USA. 4Harvard Medical School, Boston
Massachusetts, USA. 5Whitehead Institute/Massachusetts Institute of Technology Center for Genome Research, Cambridge Massachusetts, USA. 6Division 
of Pediatric Hematology/Oncology, Sophia Children’s Hospital, University of Rotterdam, The Netherlands. 7Princess Margaret Hospital, The University of
Toronto, Ontario, Canada. Correspondence and requests for materials should be addressed to S.K. (e-mail: stanley_korsmeyer@dfci.harvard.edu) or T.G.
(e-mail: golub@genome.wi.mit.edu).

A subset of human acute leukemias with a decidedly unfavorable
prognosis possess a chromosomal translocation involving the
mixed-lineage leukemia gene (MLL, HRX, ALL1) on chromo-
some segment 11q23 (refs 1–4). The leukemic cells, which typi-
cally have a lymphoblastic morphology, have been classified as
acute lymphoblastic leukemia (ALL). Unlike other types of child-
hood ALL, however, the presence of the MLL translocation in
ALL often results in an early relapse after chemotherapy. As MLL
translocations are typically found in infant leukemias and in
chemotherapy-induced leukemia, it has remained uncertain
whether host-related factors or tumor-intrinsic biological differ-
ences are responsible for poor survival.

Lymphoblastic leukemias with a rearranged MLL or germline
MLL are similar in most morphological and histochemical char-
acteristics. Immunophenotypic differences associated with lym-
phoblasts bearing an MLL translocation include a lack of the
early lymphocyte antigen CD10 (ref. 5), expression of the pro-
teoglycan NG2 (ref. 6) and a propensity to co-express the
myeloid antigens CD15 and CD65 (ref. 5). This prompted the
corresponding gene to be called mixed-lineage leukemia1 and
gave rise to models that remain largely unresolved, in which the
leukemia reflects disordered cell-fate decisions or the transfor-
mation of a more multipotent progenitor.

Translocations in MLL result in the production of a chimeric
protein in which the amino–terminal portion of MLL is fused to

the carboxy–terminal portion of 1 of more than 20 fusion part-
ners7. This has led to models of leukemogenesis in which the
MLL fusion protein either may confer gain of function or neo-
morphic properties or may interfere with normal MLL function
(with the MLL translocation representing a dominant-negative
gene). Moreover, mice heterozygous for Mll (Mll+/–) show devel-
opmental aberrations8,9, suggesting that the disruption of one
allele by chromosomal translocation may also manifest itself as
haplo-insufficiency in leukemic cells.

The MLL protein is a homeotic regulator that shares homology
with Drosophila trithorax (trx) and positively regulates the main-
tenance of homeotic (Hox) gene expression during develop-
ment8. Studies of Mll-deficient mice indicate that Mll is required
for proper segment identity in the axioskeletal system and also
regulates hematopoiesis9. As Mll normally regulates the expres-
sion of Hox genes, its role in leukemogenesis may include altered
patterns of HOX gene expression. Much evidence shows that
HOX genes are important for appropriate hematopoietic devel-
opment10. In addition, the t(7;11) (p15;p15) found in human
acute myelogenous leukemia (AML) results in a fusion of
HOXA9 to the nucleoporin NUP98 (refs 11,12). Thus, HOX
genes represent one set of transcriptional targets that warrant
assessment in leukemias with MLL translocation.

We considered that MLL translocations might maintain a gene
expression program that results in a distinct form of leukemia
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and reasoned that RNA profiles might resolve whether leukemias
bearing an MLL translocation represent a truly biphenotypic
leukemia of mixed identity, a conventional B-cell precursor ALL
with expression of limited myeloid genes, or a less committed
hematopoietic progenitor cell. In addition, comparing gene
expression profiles of lymphoblastic leukemias with and without
rearranged MLL is important because of their markedly different
response to standard ALL therapy and because such analysis may
identify molecular targets for therapeutic approaches. The
expression profiles reported here show that ALLs possessing a
rearranged MLL have a highly uniform and distinct pattern that
clearly distinguishes them from conventional ALL or AML and
warrants designation as the distinct leukemia MLL.

Results
MLL is distinct from conventional ALL
To further define the biological characteristics specified by MLL
translocations, we compared the gene expression profiles of
leukemic cells from individuals diagnosed with B-
precursor ALL bearing an MLL translocation
against those from individuals diagnosed with
conventional B-precursor ALL that lack this
translocation. Initially, we collected samples from
20 individuals with conventional childhood ALL
(denoted ALL), 10 of which had a TEL/AML1
translocation. In addition, we collected samples
from 17 individuals affected with the MLL
translocation (denoted MLL). Details of the
affected individuals and expression data are avail-
able online (Methods).

First, we determined whether there were genes
among the 12,600 tested whose expression pattern
correlated with the presence of an MLL transloca-
tion. We sorted the genes by their degree of correla-
tion with the MLL/ALL distinction (Fig. 1) and
used permutation testing to assess the statistical sig-
nificance of the observed differences in gene expres-
sion13. For the 37 samples tested, roughly 1,000
genes are underexpressed in MLL as compared with
conventional ALL, and about 200 genes are rela-
tively highly expressed (data not shown). Thus,
MLL shows a gene expression profile markedly dif-
ferent from that of conventional ALL.

MLL shows multilineage gene expression
Inspection of the genes differentially expressed
between MLL and ALL is instructive (Fig. 1). Many
genes underexpressed in MLL have a function in
early B-cell development. These include genes
expressed in early B cells14,15, MME, CD24, CD22

and DNTT (mouse TdT); genes required for appropriate B-cell
development16–19, TCF3, TCF4, POU2AF1 and LIG4; and
SMARCA4 (mouse Snf2b), which is correlated with B-precursor
ALL in an AML/ALL comparison13 (Fig. 1 and Web Note A).
Genes encoding certain adhesion molecules are relatively over-
expressed in MLL, including LGALS1, ANXA1, ANXA2, CD44
and SPN.

Several genes that are expressed in hematopoietic lineages
other than lymphocytes are also highly expressed in MLL. These
include genes that are expressed in progenitors20–22, PROML1,
FLT3 and LMO2; myeloid-specific genes23–25, CCNA1, SER-
PINB1, CAPG and RNASE3; and at least one natural killer
cell–associated gene26, the gene encoding NKG2D (Fig. 1 and
Web Note A). Overexpression of HOXA9 and PRG1 in MLL is of
particular interest, as these genes have been reported to be highly
expressed in AML13 and overexpression of HOXA9 has been
associated with a poor prognosis13.

Fig. 1 Genes that distinguish ALL from MLL. The 100 genes
that are most highly correlated with the class distinction are
shown. Each column represents a leukemia sample, and each
row represents an individual gene. Expression levels are nor-
malized for each gene, where the mean is 0, expression levels
greater than the mean are shown in red and levels less than
the mean are in blue. Increasing distance from the mean is
represented by increasing color intensity. The top 50 genes
are relatively underexpressed and the bottom 50 genes rela-
tively overexpressed in MLL. Gene accession numbers and the
gene symbols or DNA sequence names are labeled on the
right. Individual samples are arranged such that column 1 cor-
responds to ALL patient 1, column 2 corresponds to ALL
patient 2, and so on. Information about the samples along
with the top 200 genes that make the ALL/MLL distinction
and their accession numbers can be found on our web site
(http://research.dfci.harvard.edu/korsmeyer/MLL.htm).
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Personal Genomics



Personal Genomics
• We need to produce reliable 

genome measurements, but 
on much bigger scale 
(Algorithmics, Systems)

• Multiple genome features, 
decide which are relevant 
and significant (Information 
Retrieval, Data Management)

• Population-based science, 
interpreted individually 
(Machine Learning/
Statistics, Privacy)
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NHGRI	strategic	plan

• What	does	the	NIH	think	genomics	should	be	for	
the	next	10	years?

[Nature,	Feb.	2011]



Where	do	we	fit	in?
• The	major	bo`leneck	in	genome	sequencing	is	no	longer	data	genera;on—the	computa;onal	challenges	around	data	

analysis,	display	and	integra;on	are	now	rate	limi;ng.	New	approaches	and	methods	are	required	to	meet	these	
challenges.	

• Data	analysis		
– Computa;onal	tools	are	quickly	becoming	inadequate	for	analysing	the	amount	of	genomic	data	that	can	now	be	generated,	and	this	

mismatch	will	worsen.	Innova;ve	approaches	to	analysis,	involving	close	coupling	with	data	produc;on,	are	essen;al.	
• Data	integraIon	

– Genomics	projects	increasingly	produce	disparate	data	types	(for	example,	molecular,	phenotypic,	environmental	and	clinical),	so	
computa;onal	approaches	must	not	only	keep	pace	with	the	volume	of	genomic	data,	but	also	their	complexity.	New	integra;ve	
methods	for	analysis	and	for	building	predic;ve	models	are	needed.	

• VisualizaIon	
– In	the	past,	visualizing	genomic	data	involved	indexing	to	the	one-dimensional	representa;on	of	a	genome.	New	visualiza;on	tools	will	

need	to	accommodate	the	mul;dimensional	data	from	studies	of	molecular	phenotypes	in	different	cells	and	;ssues,	physiological	
states	and	developmental	;me.	Such	tools	must	also	incorporate	non-molecular	data,	such	as	phenotypes	and	environmental	
exposures.	The	new	tools	will	need	to	accommodate	the	scale	of	the	data	to	deliver	informa;on	rapidly	and	efficiently.	

• ComputaIonal	tools	and	infrastructure	
– Generally	applicable	tools	are	needed	in	the	form	of	robust,	well-engineered	socware	that	meets	the	dis;nct	needs	of	genomic	and	

non-genomic	scien;sts.	Adequate	computa;onal	infrastructure	is	also	needed,	including	sufficient	storage	and	processing	capacity	to	
accommodate	and	analyse	large,	complex	data	sets	(including	metadata)	deposited	in	stable	and	accessible	repositories,	and	to	
provide	consolidated	views	of	many	data	types,	all	within	a	framework	that	addresses	privacy	concerns.	Ideally,	mul;ple	solu;ons	
should	be	developed105.	

http://www.nature.com.ezproxy.welch.jhmi.edu/nature/journal/v470/n7333/full/nature09764.html%2523ref105
http://www.nature.com.ezproxy.welch.jhmi.edu/nature/journal/v470/n7333/full/nature09764.html%2523ref105


Where	do	we	fit	in?

• Mee;ng	the	computa;onal	challenges	for	genomics	
requires	scien;sts	with	exper;se	in	biology	as	well	as	in	
informa;cs,	computer	science,	mathema;cs,	sta;s;cs	
and/or	engineering.		

• A	new	genera.on	of	inves.gators	who	are	proficient	in	
two	or	more	of	these	fields	must	be	trained	and	
supported.



What	else	is	the	class	about?

• Gives	you	an	example	of	end-to-end	use	of	what	
you’ve	learned	as	CS	as	a	prac;ce	
–We	discuss	the	design	and	analysis	of	algorithms	
(e.g.,	string	algorithms,	dynamic	programming,	
itera;ve	op;miza;on	methods)	

–We	implement	algorithms	(python)	
–We	analyze	data	(also	in	python)	

• We	also	learn	about	biology,	medicine	and	why	
government	shutdowns	are	really	awful

29



Administrative Details



Class webpage:
1.http://www.hcbravo.org/cmsc423 

Everything you want to know is there.

http://www.hcbravo.org/cmsc423


Todo after class today

1) Enroll in Piazza class

2) Enroll in Rosalind pre-lecture and final submission pages (links posted in Piazza)

3) Complete course survey on ELMS

For next class

1) Reading

2) Pre-lecture reading quiz on ELMS

3) Pre-lecture rosalind exercises


