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Entities, processes and artifacts

• Genome Sequences


• TCAGTTGGAGCTGCTCCCCCACGGCCTCTCCTCACATTCCACGTCCTGTAGCTCTATGACCTCCACCTTTGAGTCCCTCCTCTCACACCTGACATGAAAAGGCACATGAGGATCCTCAAATACCCC
GTGATCAGTCTCAGGGTAGCTCTCATAGCCTGGACAGGGCCCCCCTCGGGGGTTGCGCCCAGGTCCAGGCGGGGGATGCACAGCAACAGTCACCGAAGCAGAAGCCGTCACAGTGGTGATGGGCTG
GCAGTAGCTGGGCACAGAGCTGCCCATGGCGGTGGACGTTGGGTTCCGAGGGTTGTGAGAACGGGCCCCACGGGGCCCTGAGCGGTCCCTATTGCTAGGGCCAGAATGCCCTTCAGTAGAAATTTC
AAAAGCGTCTCTGCGCGGTCTGTAGGGGGGTGGCCGCAAGCCTTCTCTAGGGGGATCCCTTCGAGGCTGCTGGCCTTGCCGTCCAGGGGACAAGGAGCCAGAGTCCAGGTGGGGCTGTTGCCGAGG
GGTCAAGGGAGGCTGATGTCTGGAGTCCGGATGGACCACCTGCAGAGGAGAGACATAGGTCAACACAGGGAGGTAGGATGGTGGTGATGTTCCACCCACAAAAGAAAACCTATTCCTTTAGAAACC
TCCAGGATGTGAATCCTGCCTGCACCTGCACAGCTGGCTGGAGGCATATAGCCACTGCCCATAGATCTCAACTTACCCTCACAACCAACTGCCCCCAGGCCTAAGTTCTCTGCCTCAAAACTGCCA
AGGCCTGGATAGCCAAGAGCCTGGGTGTCTTGGAAATATGCAACCATAAATAGTAGCTTTTAGAAGTATAAGGCTCCTGTTTCTGGGTCATATTAGTGTTGTTTTCACCTGTCCCCAGCCCTAAGC
CAGGTGTGGCCAGAAGCAAATGTACTGTAAGAGCAGAGCAAAAACTTCCACACAGATAGTTCTGTTAGGCAATACATCTCTGCCTGACTATTAGGAATCTGGTTTCTGGGTCCTCTGTACAAAGCT
CGGAGCAACACAGTGGCCACATCAATCAAAAGGACCGTGACCAACTTCAAAGTCGGTGAGCTTGTACCTATTTTTAGGCTCCTGCTGAACAGAACCAGATTCACACTACAGCTCAGCAGGGCATCG
TCACGGGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTGGGGGGGGGGGGTGGACAGAGGACGGGGACACAATTCACTGGCCAGCCCTTCTCTCCTTCAAGGAAGGCTGCTCTAGCCTG
GGACTGGAATACACATTTCCTGTAAACATGGTGGGGGCCTCAGGCAAGCCAGAGTTTTGGAGCCTTCCTTAACTCTTCAAGGTGAGCATCTTGACTTGGAGGGTGGGGGTGCGGGTAAGGAAGGAA
CCTGTGGACTCCTCCCTACAAGACAGAAAAGGAATAAGCCACGAAGACAATAACGATTTTTGTATCAAGCGTCCTCTCCCATTTCAGCTTACCTGACAATGAAATCAAATTCGGACCCTGCAAGCA
TCAGTACACCCAGCAGAGTGGACACAGCACCGTCCAGAACGGGAGCAAACATGTGCTCCAGAGCGAGCATAGCCCTGTGGTTCTTGTCCCCAATGGCTGTCAGAAAGGCCTGAACAAAGGAGAAAA
TTGACACGGTCACATTCTGGGTGTGGTAAAGTGCTCAGCTGTGTCTATACTTGGGTTTTGTAT…
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Entities, processes and artifacts

• Genome Sequences


• Gene Expression Measurements
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and reasoned that RNA profiles might resolve whether leukemias
bearing an MLL translocation represent a truly biphenotypic
leukemia of mixed identity, a conventional B-cell precursor ALL
with expression of limited myeloid genes, or a less committed
hematopoietic progenitor cell. In addition, comparing gene
expression profiles of lymphoblastic leukemias with and without
rearranged MLL is important because of their markedly different
response to standard ALL therapy and because such analysis may
identify molecular targets for therapeutic approaches. The
expression profiles reported here show that ALLs possessing a
rearranged MLL have a highly uniform and distinct pattern that
clearly distinguishes them from conventional ALL or AML and
warrants designation as the distinct leukemia MLL.

Results
MLL is distinct from conventional ALL
To further define the biological characteristics specified by MLL
translocations, we compared the gene expression profiles of
leukemic cells from individuals diagnosed with B-
precursor ALL bearing an MLL translocation
against those from individuals diagnosed with
conventional B-precursor ALL that lack this
translocation. Initially, we collected samples from
20 individuals with conventional childhood ALL
(denoted ALL), 10 of which had a TEL/AML1
translocation. In addition, we collected samples
from 17 individuals affected with the MLL
translocation (denoted MLL). Details of the
affected individuals and expression data are avail-
able online (Methods).

First, we determined whether there were genes
among the 12,600 tested whose expression pattern
correlated with the presence of an MLL transloca-
tion. We sorted the genes by their degree of correla-
tion with the MLL/ALL distinction (Fig. 1) and
used permutation testing to assess the statistical sig-
nificance of the observed differences in gene expres-
sion13. For the 37 samples tested, roughly 1,000
genes are underexpressed in MLL as compared with
conventional ALL, and about 200 genes are rela-
tively highly expressed (data not shown). Thus,
MLL shows a gene expression profile markedly dif-
ferent from that of conventional ALL.

MLL shows multilineage gene expression
Inspection of the genes differentially expressed
between MLL and ALL is instructive (Fig. 1). Many
genes underexpressed in MLL have a function in
early B-cell development. These include genes
expressed in early B cells14,15, MME, CD24, CD22

and DNTT (mouse TdT); genes required for appropriate B-cell
development16–19, TCF3, TCF4, POU2AF1 and LIG4; and
SMARCA4 (mouse Snf2b), which is correlated with B-precursor
ALL in an AML/ALL comparison13 (Fig. 1 and Web Note A).
Genes encoding certain adhesion molecules are relatively over-
expressed in MLL, including LGALS1, ANXA1, ANXA2, CD44
and SPN.

Several genes that are expressed in hematopoietic lineages
other than lymphocytes are also highly expressed in MLL. These
include genes that are expressed in progenitors20–22, PROML1,
FLT3 and LMO2; myeloid-specific genes23–25, CCNA1, SER-
PINB1, CAPG and RNASE3; and at least one natural killer
cell–associated gene26, the gene encoding NKG2D (Fig. 1 and
Web Note A). Overexpression of HOXA9 and PRG1 in MLL is of
particular interest, as these genes have been reported to be highly
expressed in AML13 and overexpression of HOXA9 has been
associated with a poor prognosis13.

Fig. 1 Genes that distinguish ALL from MLL. The 100 genes
that are most highly correlated with the class distinction are
shown. Each column represents a leukemia sample, and each
row represents an individual gene. Expression levels are nor-
malized for each gene, where the mean is 0, expression levels
greater than the mean are shown in red and levels less than
the mean are in blue. Increasing distance from the mean is
represented by increasing color intensity. The top 50 genes
are relatively underexpressed and the bottom 50 genes rela-
tively overexpressed in MLL. Gene accession numbers and the
gene symbols or DNA sequence names are labeled on the
right. Individual samples are arranged such that column 1 cor-
responds to ALL patient 1, column 2 corresponds to ALL
patient 2, and so on. Information about the samples along
with the top 200 genes that make the ALL/MLL distinction
and their accession numbers can be found on our web site
(http://research.dfci.harvard.edu/korsmeyer/MLL.htm).
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Entities, processes and artifacts

• Genome Sequences


• Gene Expression Measurements


• Networks of gene or protein relationships/interactions


• Sequence alignments


• Phylogenetic trees


• Genome variation in populations
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Libraries

1.Connect/access databases


2.Data structures for fundamental objects


3.Basic operations/algorithms on these structures


4.Tools for communication
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Libraries

• R: Bioconductor: http://bioconductor.org/


• Python: BioPython: http://biopython.org/wiki/Main_Page


• C++: SeqAn: http://www.seqan.de/


• Perl: BioPerl: http://www.bioperl.org/wiki/Main_Page


• Ruby: BioRuby: http://www.bioruby.org/


• Java: BioJava: http://biojava.org/wiki/Main_Page
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Databases

We will discuss these in later lectures


• Sequence: Genbank/Refseq/Unigene/Short Read Archive


• Gene Expression: Gene Expression Omnibus


• Pathways: KEGG


• Function: Gene Ontology
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Standards

• Many of these data are stored in standard formats:


• FASTA sequence format


• FASTQ sequence/with quality


• GTF/GFF for genomic features (genes, exons, introns, etc.)


• Libraries provide interfaces to the databases and standards.
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Encapsulation

• Libraries also encapsulate these standard data types into appropriate data structures 
for the given language.


• Example: sequence records in BioPython


• Example: ‘GenomicRanges’ in R/Bioconductor
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Encapsulation

• Basic operations on these data structures


• Standard computation: e.g., aggregation, filtering, etc.


• Bio-specific: e.g., genomic region overlap, DNA->AminoAcid translation 
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Communication

• Big part of the Bioinformatician and Computational Biologist job:


• Communicate results 

• Examples:


• New sequence aligner: how fast is it? how well does it align?


• Expression analysis: Does the data match your analysis?
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and reasoned that RNA profiles might resolve whether leukemias
bearing an MLL translocation represent a truly biphenotypic
leukemia of mixed identity, a conventional B-cell precursor ALL
with expression of limited myeloid genes, or a less committed
hematopoietic progenitor cell. In addition, comparing gene
expression profiles of lymphoblastic leukemias with and without
rearranged MLL is important because of their markedly different
response to standard ALL therapy and because such analysis may
identify molecular targets for therapeutic approaches. The
expression profiles reported here show that ALLs possessing a
rearranged MLL have a highly uniform and distinct pattern that
clearly distinguishes them from conventional ALL or AML and
warrants designation as the distinct leukemia MLL.

Results
MLL is distinct from conventional ALL
To further define the biological characteristics specified by MLL
translocations, we compared the gene expression profiles of
leukemic cells from individuals diagnosed with B-
precursor ALL bearing an MLL translocation
against those from individuals diagnosed with
conventional B-precursor ALL that lack this
translocation. Initially, we collected samples from
20 individuals with conventional childhood ALL
(denoted ALL), 10 of which had a TEL/AML1
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translocation (denoted MLL). Details of the
affected individuals and expression data are avail-
able online (Methods).
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among the 12,600 tested whose expression pattern
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tion. We sorted the genes by their degree of correla-
tion with the MLL/ALL distinction (Fig. 1) and
used permutation testing to assess the statistical sig-
nificance of the observed differences in gene expres-
sion13. For the 37 samples tested, roughly 1,000
genes are underexpressed in MLL as compared with
conventional ALL, and about 200 genes are rela-
tively highly expressed (data not shown). Thus,
MLL shows a gene expression profile markedly dif-
ferent from that of conventional ALL.

MLL shows multilineage gene expression
Inspection of the genes differentially expressed
between MLL and ALL is instructive (Fig. 1). Many
genes underexpressed in MLL have a function in
early B-cell development. These include genes
expressed in early B cells14,15, MME, CD24, CD22

and DNTT (mouse TdT); genes required for appropriate B-cell
development16–19, TCF3, TCF4, POU2AF1 and LIG4; and
SMARCA4 (mouse Snf2b), which is correlated with B-precursor
ALL in an AML/ALL comparison13 (Fig. 1 and Web Note A).
Genes encoding certain adhesion molecules are relatively over-
expressed in MLL, including LGALS1, ANXA1, ANXA2, CD44
and SPN.

Several genes that are expressed in hematopoietic lineages
other than lymphocytes are also highly expressed in MLL. These
include genes that are expressed in progenitors20–22, PROML1,
FLT3 and LMO2; myeloid-specific genes23–25, CCNA1, SER-
PINB1, CAPG and RNASE3; and at least one natural killer
cell–associated gene26, the gene encoding NKG2D (Fig. 1 and
Web Note A). Overexpression of HOXA9 and PRG1 in MLL is of
particular interest, as these genes have been reported to be highly
expressed in AML13 and overexpression of HOXA9 has been
associated with a poor prognosis13.

Fig. 1 Genes that distinguish ALL from MLL. The 100 genes
that are most highly correlated with the class distinction are
shown. Each column represents a leukemia sample, and each
row represents an individual gene. Expression levels are nor-
malized for each gene, where the mean is 0, expression levels
greater than the mean are shown in red and levels less than
the mean are in blue. Increasing distance from the mean is
represented by increasing color intensity. The top 50 genes
are relatively underexpressed and the bottom 50 genes rela-
tively overexpressed in MLL. Gene accession numbers and the
gene symbols or DNA sequence names are labeled on the
right. Individual samples are arranged such that column 1 cor-
responds to ALL patient 1, column 2 corresponds to ALL
patient 2, and so on. Information about the samples along
with the top 200 genes that make the ALL/MLL distinction
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Communication

• Visualize data


• Tons of plotting utilities in R/Bioconductor


• matplotlib in python


• Documentation standards


• pydoc
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Reproducibility

• Extremely important aspect of data analysis

• ‘Starting from the same raw data, can we reproduce your analysis 

and obtain the same results?’

• Using libraries helps:

• Since you don’t reimplement everything, reduce programmer error

• Large user bases serve as ‘watchdog’ for quality and correctness


• Standard practices help:

• Version control: git

• Unit testing: pyunit, RUnit

• Share and publish: github
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Practical Tips

• Many tasks can be organized in modular manner:


• Data acquisition


• Algorithm/tool development


• Computational analysis


• Communication of results
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Practical Tips

• Many tasks can be organized in modular manner:


• Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it 
up


• Algorithm/tool development


• Computational analysis


• Communication of results
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Practical Tips

• Many tasks can be organized in modular manner:


• Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it 
up


• Algorithm/tool development: if new analysis tools are required


• Computational analysis


• Communication of results
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Practical Tips

• Many tasks can be organized in modular manner:


• Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it 
up


• Algorithm/tool development: if new analysis tools are required


• Computational analysis: use tools to analyze data


• Communication of results
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Practical Tips

• Many tasks can be organized in modular manner:


• Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it 
up


• Algorithm/tool development: if new analysis tools are required


• Computational analysis: use tools to analyze data


• Communication of results: prepare summaries of experimental results, plots,  
publication, upload processed data to repositories
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Practical Tips

• Many tasks can be organized in modular manner:


• Data acquisition: get data, put it in usable format (many ‘join’ operations), clean it 
up


• Algorithm/tool development: if new analysis tools are required


• Computational analysis: use tools to analyze data


• Communication of results: prepare summaries of experimental results, plots,  
publication, upload processed data to repositories
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Rarely does a single 
language handle all 
of these equally well



Practical Tips

• Modularity requires organization and careful thought


• In bioinformatics we wear two hats


• Algorithm/tool developer


• Experimentalist: we don’t get trained to think this way enough!


• It helps two consciously separate these two jobs
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Think like an experimentalist

• Plan your experiment


• Gather your raw data


• Gather your tools


• Execute experiment


• Analyze


• Communicate
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Think like an experimentalist

• Let this guide your organization. I find structuring my projects like this to be useful:

22

project/ 
| data/ 
| | processing_scripts 
| | raw/ 
| | proc/ 
| tools/ 
| | src/ 
| | bin/ 
| exps 
| | pipeline_scripts 
| | results/ 
| | analysis_scripts 
| | figures/



Think like an experimentalist

• Keep a lab notebook!


• Literate programming tools are making this easier for computational projects


• http://en.wikipedia.org/wiki/Literate_programming


• http://jupyter.org


• http://rmarkdown.rstudio.com/
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Think like an experimentalist

• Separate experiment from analysis from communication


• Store results of computations, write separate scripts to analyze results and make plots/
tables


• Aim for reproducibility 

• There are serious consequences for not being careful


• Publication retraction


• Worse: http://videolectures.net/cancerbioinformatics2010_baggerly_irrh/


• Lots of tools available to help, use them! Be proactive: learn about them on your own!
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