
Exact String Matching
and searching for

SNPs (2)
CMSC423

The	problem

• Given:	
–	100’s	of	millions	of	short	reads:	100-200bp	reads	
–	A	long	reference	genome	(~3Bbp	for	human)	

• Do:	
–Find	high	scoring	scoring	(fiFng)	alignments	for	each	
read	

• What	we	know:	
–Dynamic	programming	soluKon	for	fiFng	alignment:		
• 1e8	*	1e9	*	1e2	operaKons,	1e9	*	1e2	memory

2

Strategies
• What	if	we	only	allow	a	small	number	of	subsKtuKons?	
–Let’s	first	try	to	find	exact	matches	and	work	from	those	(the	d+1	
trick	in	the	midterm)	

• We	are	aligning	to	the	same	reference	100’s	of	millions	of	
Kme	
–Is	there	preprocessing	we	can	do	to	amorKze	Kme?	

• Genomes	are	repeKKve	
–Can	we	search	for	matches	in	the	genome	in	a	smart	way?	
–Can	we	compress	the	genome,	and	search	over	the	compressed	
representaKon?

3

Suffix Tree

- Collapse non-branching nodes
- #nodes O(|T|)

- Memory requirement is not O(|T|)
- In the worst case, space required

for edge labels is O(|T|)

T: abaaba$
 0123456

Suffix Tree

- Collapse non-branching nodes
- #nodes O(|T|)

- Label edges with substring [start,end]
- O(1) per edge

- Memory now O(|T|)

- Construction algorithm O(|T|) (see
Gusfield)

T: abaaba$
 0123456

Recap

Structure Processing
Time Memory Search

Suffix Trie O(|T|) O(|T|2) O(|P|)

Suffix Tree O(|T|) O(|T|)* O(|P|)

Suffix Array O(|T|)
O(|T|)

(but much smaller
than Suffix Tree)

O(|P|log2|T|)

*In best implementations about 20 bytes per character (as opposed to 4 bytes for suffix array)

Suffix Arrays

• Even though Suffix Trees are O(n) space, the constant hidden by the
big-Oh notation is somewhat “big”: ≈ 20 bytes / character in good
implementations.

• If you have a 10Gb genome, 20 bytes / character = 200Gb to store
your suffix tree. “Linear” but large.

• Suffix arrays are a more efficient way to store the suffixes that can do
most of what suffix trees can do, but just a bit slower.

• Slight space vs. time tradeoff.

Example Suffix Array
• Idea: lexicographically sort

all the suffixes.

• Store the starting indices of
the suffixes in an array.

s = attcatg$

attcatg$
ttcatg$
tcatg$
catg$
atg$
tg$
g$
$

1
2
3
4
5
6
7
8

$
atg$
attcatg$
catg$
g$
tcatg$
tg$
ttcatg$

8
5
1
4
7
3
6
2

suffix of sindex of suffix

sort the suffixes
alphabetically

the indices just
“come along for

the ride”

Example Suffix Array
• Idea: lexicographically sort

all the suffixes.

• Store the starting indices of
the suffixes in an array.

s = attcatg$

attcatg$
ttcatg$
tcatg$
catg$
atg$
tg$
g$
$

1
2
3
4
5
6
7
8

8
5
1
4
7
3
6
2

suffix of sindex of suffix

sort the suffixes
alphabetically

the indices just
“come along for

the ride”

Search via Suffix Arrays

• Does string “at” occur in s?

• Binary search to find “at”.

• What about “tt”?

s = cattcat$

8
6
2
5
1
7
4
3

$
at$
attcat$
cat$
cattcat$
t$
tcat$
ttcat$

√

Counting via Suffix Arrays

• How many times does “at”
occur in the string?

• All the suffixes that start with
“at” will be next to each other
in the array.

• Find one suffix that starts with
“at” (using binary search).

• Then count the neighboring
sequences that start with at.

s = cattcat$

$
at$
attcat$
cat$
cattcat$
t$
tcat$
ttcat$

8
6
2
5
1
7
4
3

Constructing Suffix Arrays

• Easy O(n2 log n) algorithm:

sort the n suffixes, which takes O(n log n) comparisons,
where each comparison takes O(n).

• There are several direct O(n) algorithms for constructing suffix
arrays that use very little space.

• The Skew Algorithm is one that is based on divide-and-conquer.

• An simple O(n) algorithm: build the suffix tree, and exploit the
relationship between suffix trees and suffix arrays (next slide)

Relationship between Suffix Arrays
and Suffix Trees

Build suffix trees with edge labels sorted lexicographically
Order of leaves: 6,5,2,3,0,4,1

6 $
5 a$
2 aaba$
3 aba$
0 abaaba$
4 ba$
1 baaa$

T: abaaba$
 0123456

Recap

Structure Processing
Time Memory Search

Suffix Trie O(|T|) O(|T|2) O(|P|)

Suffix Tree O(|T|) O(|T|)* O(|P|)

Suffix Array O(|T|)
O(|T|)

(but much smaller
than Suffix Tree)

O(|P|log2|T|)

*In best implementations about 20 bytes per character (as opposed to 4 bytes for suffix array)

Burrows-Wheeler Transform
Text transform that is useful for compression & search.

banana$
anana$b
nana$ba
ana$ban
na$bana
a$banan
$banana

banana
$banana
a$banan
ana$ban
anana$b
banana$
nana$ba
na$bana

BWT(banana) =
annb$aa

Tends to put runs of the
same character together.

Makes compression
work well.

“bzip” is based on this.

sort

Another Example

appellee$
ppellee$a
pellee$ap
ellee$app
llee$appe
lee$appel
ee$appell
e$appelle
$appellee

appellee$
$appellee
appellee$
e$appelle
ee$appell
ellee$app
lee$appel
llee$appe
pellee$ap
ppellee$a

BWT(appellee$) =
e$elplepa

Doesn’t always improve
the compressibility...

sort

abbaaba$

1) Compute Burrows-Wheeler Transform of

Recovering the string

e
$
e
l
p
l
e
p
a

$
a
e
e
e
l
l
p
p

$appellee
appellee$
e$appelle
ee$appell
ellee$app
lee$appel
llee$appe
pellee$ap
ppellee$a

BWT sort
BWT

$a
ap
e$
ee
el
le
ll
pe
pp

sort
these 2
columns

→ first c
olumn

→ first 2
 columns

e
$
e
l
p
l
e
p
a

$a
ap
e$
ee
el
le
ll
pe
pp

prepend
BWT

column

$ap
app
e$a
ee$
ell
lee
lle
pel
ppe

Sort
these 3
columns

→
 fi

rs
t 3

 c
ol

um
ns

Inverse BWT

def inverseBWT(s):
B = [s1,s2,s3,...,sn]
for i = 1..n:

sort B
prepend si to B[i]

return row of B that ends with $

Another BWT Example

dogwood$
ogwood$d
gwood$do
wood$dog
ood$dogw
od$dogwo
d$dogwoo
$dogwood

$dogwood
d$dogwoo
dogwood$
gwood$do
od$dogwo
ogwood$d
ood$dogw
wood$dog

sort last column

BWT(dogwood$) =
do$oodwg

Another BWT Exampledo$oodwg

d
o
$
o
o
d
w
g

$
d
d
g
o
o
o
w

$d
d$
do
gw
od
og
oo
wo

$d
d$
do
gw
od
og
oo
wo

d
o
$
o
o
d
w
g

$do
d$d
dog
gwo
od$
ogw
ood
woo

d
o
$
o
o
d
w
g

$do
d$d
dog
gwo
od$
ogw
ood
woo

$dog
d$do
dogw
gwoo
od$d
ogwo
ood$
wood

$dog
d$do
dogw
gwoo
od$d
ogwo
ood$
wood

d
o
$
o
o
d
w
g

$dogw
d$dog
dogwo
gwood
od$do
ogwoo
ood$d
wood$

$dogw
d$dog
dogwo
gwood
od$do
ogwoo
ood$d
wood$

d
o
$
o
o
d
w
g

$dogwo
d$dogw
dogwoo
gwood$
od$dog
ogwood
ood$do
wood$d

d
o
$
o
o
d
w
g

$dogwo
d$dogw
dogwoo
gwood$
od$dog
ogwood
ood$do
wood$d

$dogwoo
d$dogwo
dogwood
gwood$d
od$dogw
ogwood$
ood$dog
wood$do

$dogwoo
d$dogwo
dogwood
gwood$d
od$dogw
ogwood$
ood$dog
wood$do

d
o
$
o
o
d
w
g

$dogwood
d$dogwoo
dogwood$
gwood$do
od$dogwo
ogwood$d
ood$dogw
wood$dog

Pr
ep

en
d

So
rt

Pr
ep

en
d

So
rt

Pr
ep

en
d

So
rt

Pr
ep

en
d

So
rt

Prepend Sort Prepend Sort Prepend Sort

Searching with BWT: LF Mapping

$unabashable
abashable$un
able$unabash
ashable$unab
bashable$una
ble$unabasha
e$unabashabl
hable$unabas
le$unabashab
nabashable$u
shable$unaba
unabashable$

BWT(unabashable)

LF Mapping

$ a b e h l n s u
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 1 1 0 1 0 0
0 0 1 1 1 0 1 0 0
0 1 1 1 1 0 1 0 0
0 2 1 1 1 0 1 0 0
0 2 1 1 1 1 1 0 0
0 2 1 1 1 1 1 1 0
0 2 2 1 1 1 1 1 0
0 2 2 1 1 1 1 1 1
0 3 2 1 1 1 1 1 1
1 3 2 1 1 1 1 1 1

of times letter
appears before this
position in the last
column.

∑

LF Property: The ith occurrence of a letter X in the last column
corresponds to the ith occurrence of X in the first column.

abbaaba$

1) Compute Burrows-Wheeler Transform of

2) Write down the LF mapping matrix for the BWT of question 1

$ a b e h l n s u
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 1 1 0 1 0 0
0 0 1 1 1 0 1 0 0
0 1 1 1 1 0 1 0 0
0 2 1 1 1 0 1 0 0
0 2 1 1 1 1 1 0 0
0 2 1 1 1 1 1 1 0
0 2 2 1 1 1 1 1 0
0 2 2 1 1 1 1 1 1
0 3 2 1 1 1 1 1 1
1 3 2 1 1 1 1 1 1

BWT Search

$unabashable
abashable$un
able$unabash
ashable$unab
bashable$una
ble$unabasha
e$unabashabl
hable$unabas
le$unabashab
nabashable$u
shable$unaba
unabashable$

BWT(unabashable)

LF Mapping

∑

BWTSearch(aba) Start from the end of the pattern

Step 1: Find the range of
“a”s in the first column

Step 2: Look at the same
range in the last column.

Step 3: “b” is the next
pattern character. Set B =
the LF mapping entry for b
in the first row of the
range.
Set E = the LF mapping
entry for b in the last + 1
row of the range.

Step 4: Find the range for “b”
in the first row, and use B and
E to find the right subrange
within the “b” range.

BWT Searching Example 2

$bananna
a$banann
ananna$b
anna$ban
bananna$
na$banan
nanna$ba
nna$bana

pattern = “bana”

a $ a b n
0 0 0 0
0 1 0 0
0 1 0 1
0 1 1 1
0 1 1 2
1 1 1 2
1 1 1 3
1 2 1 3
1 3 1 3

$bananna
a$banann
ananna$b
anna$ban
bananna$
na$banan
nanna$ba
nna$bana

n

(B,E) = 0, 2

$bananna
a$banann
ananna$b
anna$ban
bananna$
na$banan
nanna$ba
nna$bana

n

$bananna
a$banann
ananna$b
anna$ban
bananna$
na$banan
nanna$ba
nna$bana

a

(B,E) = 1, 2

$ a b n
0 0 0 0
0 1 0 0
0 1 0 1
0 1 1 1
0 1 1 2
1 1 1 2
1 1 1 3
1 2 1 3
1 3 1 3

$ a b n
0 0 0 0
0 1 0 0
0 1 0 1
0 1 1 1
0 1 1 2
1 1 1 2
1 1 1 3
1 2 1 3
1 3 1 3

$ a b n
0 0 0 0
0 1 0 0
0 1 0 1
0 1 1 1
0 1 1 2
1 1 1 2
1 1 1 3
1 2 1 3
1 3 1 3

$bananna
a$banann
ananna$b
anna$ban
bananna$
na$banan
nanna$ba
nna$bana

a

(B,E) = 0, 1

$ a b n
0 0 0 0
0 1 0 0
0 1 0 1
0 1 1 1
0 1 1 2
1 1 1 2
1 1 1 3
1 2 1 3
1 3 1 3

$bananna
a$banann
ananna$b
anna$ban
bananna$
na$banan
nanna$ba
nna$bana

b $ a b n
0 0 0 0
0 1 0 0
0 1 0 1
0 1 1 1
0 1 1 2
1 1 1 2
1 1 1 3
1 2 1 3
1 3 1 3

BWT Searching Notes
• Don’t have to store the LF mapping. A more complex algorithm (later

slides) lets you compute it in O(1) time in compressed data on the fly
with some extra storage.

• To find the range in the first column corresponding to a character:

• Pre-compute array C[c] = # of occurrences in the string of
characters lexicographically < c.

• Then start of the “a” range, for example, is: C[“a”] + 1.

• Running time: O(|pattern|)

• Finding the range in the first column takes O(1) time using the C
array.

• Updating the range takes O(1) time using the LF mapping.

Pseudocode for CountingOccurrences
in BWT w/o stored LF mapping

c = P[p], i = p
sp = C[c] + 1; ep = C[c+1]

while (sp ≤ ep) and (i ≥ 2) do
c = P[i-1]
sp = C[c] + Occ(c, sp-1) + 1
ep = C[c] + Occ(c, ep)
i = i - 1

if ep < sp then
return “not found”

else
return ep - sp + 1

C[c] = index into first column
where the “c”s begin.

Occ(c, p) = # of of c in the
first p characters of BWT(S),
aka the LF mapping.

function Count(Sbwt, P):

Relationship Between
BWT and Suffix Arrays

$appellee
appellee$
e$appelle
ee$appell
ellee$app
lee$appel
llee$appe
pellee$ap
ppellee$a

$
appellee$
e$
ee$
ellee$
lee$
llee$
pellee$
ppellee$

BWT
matrix

The suffixes
are obtained
by deleting
everything
after the $

These are still in
sorted order
because “$”
comes before
everything else

9
1
8
7
4
6
5
3
2

s = appellee$
123456789

Suffix array
(start position

for the suffixes)

s[9-1] = e
s[1-1] = $
s[8-1] = e
s[7-1] = l
s[4-1] = p
s[6-1] = l
s[5-1] = e
s[3-1] = p
s[2-1] = a

Suffix position - 1 =
the position of the
last character of
the BWT matrix

($ is a special case)

subtract 1

Relationship Between
BWT and Suffix Trees

• Remember: Suffix Array = suffix numbers obtained by traversing
the leaf nodes of the (ordered) Suffix Tree from left to right.

• Suffix Tree ⇒ Suffix Array ⇒ BWT.

$

e

lee$

p

e$$
llee$

l

ee$

pellee$
ellee$

∑ = {$,e,l,p}
appellee$
123456789

s =
9

8

4

7
6 5

3
3

Ordered suffix tree
for previous example:

Computing BWT in O(n) time

• Easy O(n2 log n)-time algorithm to compute the BWT (create
and sort the BWT matrix explicitly).

• Several direct O(n)-time algorithms for BWT.
These are space efficient.

• Also can use suffix arrays or trees:

Compute the suffix array, use correspondence between suffix
array and BWT to output the BWT.

O(n)-time and O(n)-space, but the constants are large.

Recap
BWT useful for searching and compression.

BWT is invertible: given the BWT of a string, the string can be reconstructed!

BWT is computable in O(n) time.

Close relationships between Suffix Trees, Suffix Arrays, and BWT:

• Suffix array = order of the suffix numbers of the suffix tree,
traversed left to right

• BWT = letters at positions given by the suffix array entries - 1

Even after compression, can search string quickly.

Recap

Structure Processing
Time Memory Search

Suffix Trie O(|T|) O(|T|2) O(|P|)

Suffix Tree O(|T|) O(|T|)* O(|P|)

Suffix Array O(|T|)
O(|T|)

(but much smaller
than Suffix Tree)

O(|P|log2|T|)

BWT O(|T|) O(|T|)** O(|P|)

*In best implementations about 20 bytes per character (as opposed to 4 bytes for suffix array)
**Compressed! For human genome ~2GB

Move-To-Front Coding

$dgow
d$gow
od$gw
$odgw
o$dgw
o$dgw
do$gw
wdo$g

∑ do$oodwg

1
13
132
1322
13220
132202
1322024
13220244

To encode a letter, use its index in the current list, and then move it to the front of the list.

List with all
letters from the
allowed alphabet

= MTF(do$oodwg)
Benefits:

• Runs of the same letter will lead to runs of 0s.
• Common letters get small numbers, while rare letters get big numbers.

Compressing BWT Strings
Lots of possible compression schemes will benefit from preprocessing with
BWT (since it tends to group runs of the same letters together).

One good scheme proposed by Ferragina & Manzini:

PrefixCode(rle(MTF(BWT(S))))

replace runs of 0s
with the count of 0s

Huffman code that
uses more bits for

rare symbols

Pseudocode for CountingOccurrences
in BWT w/o stored LF mapping

c = P[p], i = p
sp = C[c] + 1; ep = C[c+1]

while (sp ≤ ep) and (i ≥ 2) do
c = P[i-1]
sp = C[c] + Occ(c, sp-1) + 1
ep = C[c] + Occ(c, ep)
i = i - 1

if ep < sp then
return “not found”

else
return ep - sp + 1

C[c] = index into first column
where the “c”s begin.

Occ(c, p) = # of of c in the
first p characters of BWT(S),
aka the LF mapping.

function Count(Sbwt, P):

Computing Occ in Compressed String

BT1 BT2 BT3 ...

BWT(S)

Break BWT(S) into blocks of length L (we will decide on a value for L later):

Assumes every run of 0s is contained in a block [just for ease of explanation].

BZ1 BZ2 BZ3 ...

PrefixCode(rle(MTF(BWT(BT2))))

We will store some extra info for each block (and some groups of blocks) to
compute Occ(c, p) quickly.

Occ(c, p) = # of “c”
up thru p

Extra Info to Compute Occ

BZ1 BZ2 BZ3 ... L

L2 L2

block

superblock

superblock: store |∑|-long
array giving # of occurrences
of each character up thru and
including this superblock

block: store |∑|-long array giving #
of occurrences of each character up
thru and including this block since
the end of the last super block.

Extra Info to Compute Occ

BZ1 BZ2 BZ3 ... L

L2 L2

block

superblock

superblock: store |∑|-long
array giving # of occurrences
of each character up thru and
including this superblock

block: store |∑|-long array giving #
of occurrences of each character up
thru and including this block since
the end of the last super block.

u/L blocks, each array is |∑|log L long ⟹
u
L logL =

u
log u log log u total space.

u = compressed length
Choose L = O(log u)

Extra Info to Compute Occ

BZ1 BZ2 BZ3 ... L

L2 L2

block

superblock

superblock: store |∑|-long
array giving # of occurrences
of each character up thru and
including this superblock

block: store |∑|-long array giving #
of occurrences of each character up
thru and including this block since
the end of the last super block.

u/L2 superblocks, each array is |∑|log u long
⟹ total space.u

(log u)2 log u =

u
log u

u/L blocks, each array is |∑|log L long ⟹
u
L logL =

u
log u log log u total space.

u = compressed length
Choose L = O(log u)

Extra Info to Compute Occ

BZ1 BZ2 BZ3 ... L

L2 L2

block

superblock

u = compressed length
Choose L = O(log u)

Occ(c, p) = # of “c” up thru p:

sum value at last superblock, value
at end of previous block, but then
need to handle this block.

Store an array: M[c, k, BZi, MTFi] = # of occurrences of c through the kth letter
of a block of type (BZi, MTFi).

Size: O(|∑|L2L|∑|) = O(L2L’) = O(uclog u) for c < 1 (since the string is
compressed)

