
Introduction to
genome assembly

CMSC423
Many slides courtesy of Ben Langmead and Carl Kingsford

!

Corrada Bravo 10/30/09

Sec-gen Sequencing

2

!

Corrada Bravo 10/30/09

Sec-gen Sequencing

3

Fragmentation is random,
i.e., not equal-sized (but hard to draw)

!

Corrada Bravo 10/30/09

Sec-gen Sequencing

4

!

Corrada Bravo 10/30/09

Second-Generation
Sequencing

• “Ultra high throughput” DNA sequencing

• 6 gigabases / day vs.

• 3 gigabases / 13 years (human genome
project, more or less)

• 200 bp long reads

5

From reads to evidence

From reads to evidence
1. de novo

Assume nothing! - let reads tell us everything

Reads with overlapping
sequence probably originate
from overlapping portions
of the subject genome

Encode overlap
relationships as a
graph

The full genome sequence
is a “tour” of the graph

Source: De Novo Assembly Using Illumina Reads. Illumina. 2010

Source: De Novo Assembly Using Illumina Reads. Illumina. 2010
http://www.illumina.com/Documents/products/technotes/technote_denovo_assembly.pdf

http://www.illumina.com/Documents/products/technotes/technote_denovo_assembly.pdf

What we’ll cover

• Genome assembly as graph problems

• Two representations:

• Overlap graph

• How much sequencing required for assembly

• DeBruijn graph

• How to get assemblies from solutions to graph
problems

Overlap Graph

1 2 3 4 5 6 7

1
2

3
4

5
6

7

Overlap graph:
Nodes = reads
Edges = overlaps

Given overlap graph, how can we find a good candidate assembly?

Overlap Graph

1 2 3 4 5 6 7

1
2

3
4

5
6

7

Overlap graph:
Nodes = reads
Edges = overlaps

1 2 3 4 5 6 7

1
2

3
4

5
6

77

Given overlap graph, how can we find a good candidate assembly?

Overlap Graph

1 2 3 4 5 6 7

1
2

3
4

5
6

7

Overlap graph:
Nodes = reads
Edges = overlaps

1 2 3 4 5 6 7

1
2

3
4

5
6

77

Given overlap graph, how can we find a good candidate assembly?

Hamiltonian Path (aka Traveling Salesman Path): visit every node in
the graph exactly once.

Hamiltonian Path

• Motivation: Every read must be
used in exactly one place in the
genome.

• Hamiltonian Path is NP-hard.

• Though good solvers exist, they
can’t operate on the millions of
reads from a sequencing project.

• Solution: greedy walk along the
graph.

Optimal Hamiltonian
path of 24,978 cities
in Sweden
(Applegate et al, 2004,
www.tsp.gatech.edu/sweden/
index.html).

Shotgun Sequencing
Many copies

of the DNA

Shear it, randomly breaking them into many small pieces,
read ends of each:

Assemble into original genome:

Lander-Waterman Statistics
How many reads to we need to be sure we cover the whole genome?

g

L
N

genome θ
= fraction of L
required to
detect an overlap

An island is a contiguous group of reads that are
connected by overlaps of length ≥ θL.
(Various colors above)

Want: Expression for expected # of islands given N, g, L, θ.

Expected # of Islands
λ := N/g = probability a read starts at a given position
(assuming random sampling)

Pr(k reads start in an interval of length x)
x trials, want k “successes,” small probability λ of success
Expected # of successes = λx
Poisson approximation to binomial distribution:

Pr(k reads in length x) = e

��x

(�x)k

k!

Expected # of islands = N ⨉ Pr(read is at rightmost end of island)

(1-θ)L θL = N ⨉ Pr(0 reads start in (1-θ)L)

(from above)

← LN/g is called the coverage c.

= Ne��(1�✓)L�0

0!

= Ne��(1�✓)L

= Ne�(1�✓)LN/g

Ne��(1�✓)L (�(1� ✓)L)0

0!

Expected # of Islands, 2

Expected # of islands

Rewrite to depend more directly on the things we can control: c and θ

= Ne�(1�✓)LN/g

= Ne�(1�✓)c

=
L/g

L/g
Ne�(1�✓)c

=
g

L
ce�(1�✓)c

0

0.
8

1.
6

2.
4

3.
2 4

4.
8

5.
6

6.
4

7.
2 8

8.
8

9.
6

100

200

300

400

500

600

700

L = 1000; g = 1000000

θ = 0.15

θ = 0.35

c

E
xp

ec
te

d
#

 is
la

nd
s

Assembly via Eulerian Path

de Bruijn graph
read

kmer

k

k-1

k-mer k-mer

de Bruijn graph: nodes represent
kmers, edges connect k-mers that are

known to follow each other based on an
observed read.

Can have > 1 edge between nodes.

Example bacterial de Bruijn graph

GAAA..TTAC

CCAA..ACTG

GATCA

AAGC..AAAT

A

TGCG..AAAA

CGCA..AAAT

AAGC..TAAA

CTTC..GTTT

AACA..CAAG

TGAT..GTTG

AATT..GAAG

CGTG..GAGT

GGTA..TTTC

TCAAC

TGAA..ATCG

AGAA..ACGG

G

TATC..CAACCATC..CCCA

A

AGTT..AACA

GGTT..CAAT
ACTAAAAA

TGTG..CCCC

CATC..AACG

TTCAACTTC

TGCT..TTAA

CGCT..ATCA

A

T

AAAGAAA

CAGC..CTAA
ACAC..TTTA

TACC..CAGG

CACC..AATA

TTAT..CTAA

GTATCGC
TAAC..TAGT

ACCC..CATT

CAAC..AGCC

GACTTT

CACT..AGAA

TACT..GGTT
ATGG..AAAC

GAAT..GGTT

TGAG..AGTGTTTAT

AAGA..TTTT

CAAC..TAGT

TATC..TTTT

TCTT..AAAA
CTTA..AGTG

TGGC

TCAA..GTTT
AGTA..GTTT

AACA..TCCC

TAGC..GAGTAGTC..ATGC GTAT..GTTA

ATAT..AGCT

CCCA

ACTC..TGGG

GCTC..CTAC

TGGT..TGCA

CAGG..CCAA

ACAA..CATT

TTTA..GAGG
GGAA..AACT

AGAA..AACT

TCCATT

CCAA..CAAC

TTGC..TGTG

CTGC..ATCA

GGGT..AGTA

GTAGTACCA

GTAG..AACT

CCAA..AACT

AGCTTA
GATA..TATA

AGGAT

GGGA..CAGC

CTAG..CGGG

TTGG..GTTGATTA..GTTG

GCTA..CAGC

TTCC..ATCC

TGTG..GGGG

AGTG..AACG

ATTTAAA

CATT..AACA

TAAT..AAGT

CTACGCC

ATTG..CAAA
GTTG..CAAA

CAAA..ACTCGAAA..TTAA

AGTG..TAAA

AAAA..CAAC

GTAT..TTTT

CACC..CATT

GCAG..AACC

ATCC..GGGA

CTCC..TCCC

CCAA..GGAT

AGTA..ACGG

CAAG..CAAC

CAAA..TGGA

AGTG..GGGG

GGGG..GTTA

G

AAAG..GTTG

GAAG..CCCA

GGGT..GAAA

GTTC..AATA

AAAC..AAGT
ATAG..TCAC

ACCA..AGAA

TTCA..AACT

TTCTAC CCAGC ATGT..TGCA

TTGT..TGGG

CAGG..CCAA

ACAA..CAAC

AATC..TGTG

GTTG..ACCA

TTTG..AAAT

AATG..AGTC

TCAA..GAAT

CAAT..GGAT

TCAA..TCGG

ACAG..TCGG

CAAC..TTCTGTTA..TTAC

TCTT..AGCC

TAGG..GGGG

CTTG..TAGT

TTTG..AATC
TTTT..AGTC

CAAG..CAAG

TAGG..GTTG

CTAG..GAAC

GATG..AATC

CAAG..AGCT

CTGA..TTTA

CCAA..GGGATCAA..ATCG

TTAA..ACCA

ACAG..CAATGTAT..GTTG

CCCAA

GGGT..CCCC

AGGT..AGTC

AAGA..CTTA

TGAT..ACTT

CTTT..ATAATTTT..ATAA

TTAT..AAGG

CTGG..ACCA
TTGG..GTTGTAGTT

TTCA..GTTGATCT..CCAG

GTTG..TCAA

GAGT..GAAT

CAAC..ACCA

GGCG..TAAA

CCCA..CCAG

TGCA..GTTT

GCTT..TTCA

AATT..AACT

Paths with no
branches compressed
into a single node

With perfect data, the
genome can be
reconstructed by
some Eulerian path
through this graph

Eulerian path =
use every edge exactly
once.

Assembly via Eulerian Path

acg cga gaa aac

cgt gta

acgaacgta

A directed graph has an Eulerian path if and only if:
•One node has one more edge leaving it than entering
•One node has one more edge entering than leaving
•All other nodes have the same number of edges entering and leaving

Let dG(s) be the de Bruijn graph of string s. Then s corresponds to some
Eulerian path in dG(s).

How can we find such a path?

Examples

tagacgaacgtacggtagg

tag aga gac acg cga gaa aac

cgt

gta taccgg

ggt

agg

acg cga gaa aac

cgt gta

acc cca cac

acgaaccacgacgta
gac

A directed graph has an Eulerian
cycle if and only if:
•All nodes have the same
number of edges entering and
leaving

Connect node with out-degree < in-degree to node with out-degree
< in-degree.

Walk from some arbitrary node u until you return to u, creating a
doubly liked list of the path you visit.

Repeat until all edges used:
•Start from some node w on the current tour with unused edges*.
•Walk along unused edges until you return to w, inserting the visited nodes
after w into the current tour list.

Eulerian Path Algorithm

u v w x y

Why will you return to u?

u

w

*How can find such
a node quickly?

So that we will have an Eulerian cycle.

Connect node with out-degree < in-degree to node with out-degree
< in-degree.

Walk from some arbitrary node u until you return to u, creating a
doubly liked list of the path you visit.

Repeat until all edges used:
•Start from some node w on the current tour with unused edges*.
•Walk along unused edges until you return to w, inserting the visited nodes
after w into the current tour list.

Eulerian Path Algorithm

u v w x y

a b

Why will you return to u?

u

w

*How can find such
a node quickly?

So that we will have an Eulerian cycle.

The Problem with Eulerian Paths

(Kingsford, Schatz, Pop, 2010)

There are typically an
astronomical number
of possible Eulerian
tours with perfect
data.

Adding back
constraints to limit #
of tours leads to a
NP-hard problem.

With imperfect data,
there are usually NO
Eulerian tours.

Aside: counting # of Eulerian tours in a directed
graph is easy, but in an undirected graph is #P-
complete (hard).

Mate Pairs

chop
up select for a

given size

sequence ≈ 1000
bases from each end

mate pair: 2 reads,
of opposite
orientation,
separated by an
approximately known
distance

⇒ long range information

TA
GC

AA
CC

TAA
GCC AT

CA
TG
AT

ATG
CAT GG

TG
GG
GT

GGG
TGT

GA
TT

AAT
CCA

TGG
ATG

GGA
GTT

GC
TG

CC
GG

CA
GG

AT
GA

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

TGC
ATG

TAATGCCATGGGATGTT

Gapped Genome Path String Problem

Reconstruct a string from a sequence of (k,d)-mers corresponding to a path in
a paired de Bruijn graph.

Given: A sequence of (k, d)-mers (a1|b1), ... , (an|bn) such that Suffix(ai|bi) =
Prefix(ai+1|bi+1) for all i from 1 to n-1.

Return: A string Text where the i-th k-mer in Text is equal to Suffix(ai|bi) for all i
from 1 to n, if such a string exists.

References
• http://www.cbcb.umd.edu/research/assembly_primer

• http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874646/

• http://www.math.ucsd.edu/~gptesler/186/slides/shotgun_f13-
handout.pdf

• http://www.biomedcentral.com/1471-2105/11/21/abstract

http://www.cbcb.umd.edu/research/assembly_primer
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874646/
http://www.math.ucsd.edu/~gptesler/186/slides/shotgun_f13-handout.pdf
http://www.math.ucsd.edu/~gptesler/186/slides/shotgun_f13-handout.pdf
http://www.biomedcentral.com/1471-2105/11/21/abstract

