
Introduction to 
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Many slides courtesy of Ben Langmead and Carl Kingsford
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Sec-gen Sequencing 
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Fragmentation is random, 
i.e., not equal-sized (but hard to draw)
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Second-Generation 
Sequencing

• “Ultra high throughput” DNA sequencing

• 6 gigabases / day vs.

• 3 gigabases / 13 years (human genome 
project, more or less)

• 200 bp long reads
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From reads to evidence



From reads to evidence
1. de novo

Assume nothing! - let reads tell us everything

Reads with overlapping 
sequence probably originate 
from overlapping portions 
of the subject genome

Encode overlap 
relationships as a 
graph

The full genome sequence 
is a “tour” of the graph

Source: De Novo Assembly Using Illumina Reads. Illumina. 2010 

Source: De Novo Assembly Using Illumina Reads. Illumina. 2010 
http://www.illumina.com/Documents/products/technotes/technote_denovo_assembly.pdf

http://www.illumina.com/Documents/products/technotes/technote_denovo_assembly.pdf


What we’ll cover

• Genome assembly as graph problems

• Two representations:

• Overlap graph

• How much sequencing required for assembly

• DeBruijn graph

• How to get assemblies from solutions to graph 
problems



Overlap Graph
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Overlap graph:
Nodes = reads
Edges = overlaps

Given overlap graph, how can we find a good candidate assembly?
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Overlap graph:
Nodes = reads
Edges = overlaps

1 2 3 4 5 6 7

1
2

3
4

5
6

77

Given overlap graph, how can we find a good candidate assembly?

Hamiltonian Path (aka Traveling Salesman Path): visit every node in 
the graph exactly once.



Hamiltonian Path

• Motivation: Every read must be 
used in exactly one place in the 
genome.

• Hamiltonian Path is NP-hard.

• Though good solvers exist, they 
can’t operate on the millions of 
reads from a sequencing project.

• Solution: greedy walk along the 
graph.

Optimal Hamiltonian 
path of 24,978 cities 
in Sweden  
(Applegate et al, 2004, 
www.tsp.gatech.edu/sweden/
index.html).



Shotgun Sequencing
Many copies 

of the DNA

Shear it, randomly breaking them into many small pieces, 
read ends of each:

Assemble into original genome:



Lander-Waterman Statistics
How many reads to we need to be sure we cover the whole genome?

g

L
N

genome θ
= fraction of L 
required to 
detect an overlap

An island is a contiguous group of reads that are 
connected by overlaps of length ≥ θL. 
(Various colors above)

Want: Expression for expected # of islands given N, g, L, θ.



Expected # of Islands
λ := N/g = probability a read starts at a given position 
(assuming random sampling)

Pr(k reads start in an interval of length x) 
x trials, want k “successes,” small probability λ of success
Expected # of successes = λx
Poisson approximation to binomial distribution:

Pr(k reads in length x) = e

��x

(�x)k

k!

Expected # of islands = N ⨉ Pr(read is at rightmost end of island)

(1-θ)L θL = N ⨉ Pr(0 reads start in (1-θ)L)

(from above)

← LN/g is called the coverage c.

= Ne��(1�✓)L�0

0!

= Ne��(1�✓)L

= Ne�(1�✓)LN/g

Ne��(1�✓)L (�(1� ✓)L)0

0!



Expected # of Islands, 2 

Expected # of islands

Rewrite to depend more directly on the things we can control: c and θ 

= Ne�(1�✓)LN/g

= Ne�(1�✓)c

=
L/g

L/g
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Assembly via Eulerian Path



de Bruijn graph
read

kmer

k

k-1

k-mer k-mer

de Bruijn graph: nodes represent 
kmers, edges connect k-mers that are 

known to follow each other based on an 
observed read.

Can have > 1 edge between nodes.



Example bacterial de Bruijn graph

GAAA..TTAC

CCAA..ACTG

GATCA

AAGC..AAAT

A

TGCG..AAAA

CGCA..AAAT

AAGC..TAAA

CTTC..GTTT

AACA..CAAG

TGAT..GTTG

AATT..GAAG

CGTG..GAGT

GGTA..TTTC

TCAAC

TGAA..ATCG

AGAA..ACGG

G

TATC..CAACCATC..CCCA

A

AGTT..AACA

GGTT..CAAT
ACTAAAAA

TGTG..CCCC

CATC..AACG

TTCAACTTC

TGCT..TTAA

CGCT..ATCA

A

T

AAAGAAA

CAGC..CTAA
ACAC..TTTA

TACC..CAGG

CACC..AATA

TTAT..CTAA

GTATCGC
TAAC..TAGT

ACCC..CATT

CAAC..AGCC

GACTTT

CACT..AGAA

TACT..GGTT
ATGG..AAAC

GAAT..GGTT

TGAG..AGTGTTTAT

AAGA..TTTT

CAAC..TAGT

TATC..TTTT

TCTT..AAAA
CTTA..AGTG

TGGC

TCAA..GTTT
AGTA..GTTT

AACA..TCCC

TAGC..GAGTAGTC..ATGC GTAT..GTTA

ATAT..AGCT

CCCA

ACTC..TGGG

GCTC..CTAC

TGGT..TGCA

CAGG..CCAA

ACAA..CATT

TTTA..GAGG
GGAA..AACT

AGAA..AACT

TCCATT

CCAA..CAAC

TTGC..TGTG

CTGC..ATCA

GGGT..AGTA

GTAGTACCA

GTAG..AACT

CCAA..AACT

AGCTTA
GATA..TATA

AGGAT

GGGA..CAGC

CTAG..CGGG

TTGG..GTTGATTA..GTTG

GCTA..CAGC

TTCC..ATCC

TGTG..GGGG

AGTG..AACG

ATTTAAA

CATT..AACA

TAAT..AAGT

CTACGCC

ATTG..CAAA
GTTG..CAAA

CAAA..ACTCGAAA..TTAA

AGTG..TAAA

AAAA..CAAC

GTAT..TTTT

CACC..CATT

GCAG..AACC

ATCC..GGGA

CTCC..TCCC

CCAA..GGAT

AGTA..ACGG

CAAG..CAAC

CAAA..TGGA

AGTG..GGGG

GGGG..GTTA

G

AAAG..GTTG

GAAG..CCCA

GGGT..GAAA

GTTC..AATA

AAAC..AAGT
ATAG..TCAC

ACCA..AGAA

TTCA..AACT

TTCTAC CCAGC ATGT..TGCA

TTGT..TGGG

CAGG..CCAA

ACAA..CAAC

AATC..TGTG

GTTG..ACCA

TTTG..AAAT

AATG..AGTC

TCAA..GAAT

CAAT..GGAT

TCAA..TCGG

ACAG..TCGG

CAAC..TTCTGTTA..TTAC

TCTT..AGCC

TAGG..GGGG

CTTG..TAGT

TTTG..AATC
TTTT..AGTC

CAAG..CAAG

TAGG..GTTG

CTAG..GAAC

GATG..AATC

CAAG..AGCT

CTGA..TTTA

CCAA..GGGATCAA..ATCG

TTAA..ACCA

ACAG..CAATGTAT..GTTG

CCCAA

GGGT..CCCC

AGGT..AGTC

AAGA..CTTA

TGAT..ACTT

CTTT..ATAATTTT..ATAA

TTAT..AAGG

CTGG..ACCA
TTGG..GTTGTAGTT

TTCA..GTTGATCT..CCAG

GTTG..TCAA

GAGT..GAAT

CAAC..ACCA

GGCG..TAAA

CCCA..CCAG

TGCA..GTTT

GCTT..TTCA

AATT..AACT

Paths with no 
branches compressed 
into a single node

With perfect data, the 
genome can be 
reconstructed by 
some Eulerian path 
through this graph

Eulerian path = 
use every edge exactly 
once.



Assembly via Eulerian Path

acg cga gaa aac

cgt gta

acgaacgta

A directed graph has an Eulerian path if and only if:
•One node has one more edge leaving it than entering
•One node has one more edge entering than leaving
•All other nodes have the same number of edges entering and leaving

Let dG(s) be the de Bruijn graph of string s. Then s corresponds to some 
Eulerian path in dG(s).

How can we find such a path?



Examples

tagacgaacgtacggtagg

tag aga gac acg cga gaa aac

cgt

gta taccgg

ggt

agg

acg cga gaa aac

cgt gta

acc cca cac

acgaaccacgacgta
gac

A directed graph has an Eulerian 
cycle if and only if:
•All nodes have the same 
number of edges entering and 
leaving



Connect node with out-degree < in-degree to node with out-degree 
< in-degree.

Walk from some arbitrary node u until you return to u, creating a 
doubly liked list of the path you visit.

Repeat until all edges used:
•Start from some node w on the current tour with unused edges*.
•Walk along unused edges until you return to w, inserting the visited nodes 
after w into the current tour list.

Eulerian Path Algorithm

u v w x y

Why will you return to u?

u

w

*How can find such 
a node quickly?

So that we will have an Eulerian cycle.



Connect node with out-degree < in-degree to node with out-degree 
< in-degree.

Walk from some arbitrary node u until you return to u, creating a 
doubly liked list of the path you visit.

Repeat until all edges used:
•Start from some node w on the current tour with unused edges*.
•Walk along unused edges until you return to w, inserting the visited nodes 
after w into the current tour list.

Eulerian Path Algorithm

u v w x y

a b

Why will you return to u?

u

w

*How can find such 
a node quickly?

So that we will have an Eulerian cycle.



The Problem with Eulerian Paths

(Kingsford, Schatz, Pop, 2010)

There are typically an 
astronomical number 
of possible Eulerian 
tours with perfect 
data.

Adding back 
constraints to limit # 
of tours leads to a 
NP-hard problem.

With imperfect data, 
there are usually NO 
Eulerian tours.

Aside: counting # of Eulerian tours in a directed 
graph is easy, but in an undirected graph is #P-
complete (hard).



Mate Pairs

chop 
up select for a 

given size

sequence ≈ 1000 
bases from each end

mate pair: 2 reads, 
of opposite 
orientation, 
separated by an 
approximately known 
distance

⇒ long range information
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Gapped Genome Path String Problem

Reconstruct a string from a sequence of (k,d)-mers corresponding to a path in 
a paired de Bruijn graph.

Given: A sequence of (k, d)-mers (a1|b1), ... , (an|bn) such that Suffix(ai|bi) = 
Prefix(ai+1|bi+1) for all i from 1 to n-1.

Return: A string Text where the i-th k-mer in Text is equal to Suffix(ai|bi) for all i 
from 1 to n, if such a string exists.
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